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Abstract: Transportation projects represent 42% of the total public construction projects in the US. With 
such immense size, proper competitive bidding is a must to ensure appropriate utilization of taxpayer’s 
money. Contractors submitting high bid prices are less likely to be awarded projects. Contrarywise, those 
submitting low bid prices are awarded but they become claim-oriented to recover the resulting losses; 
leading to quality, schedule, and cost impacts. Several models have been developed to help contractors 
determine balanced bid prices based on analyzing competitors’ history. However, the statistical integrity of 
such models is compromised in cases of imperfect information and dynamic behavior; where a competitor’s 
old bidding strategies behavior contradicts its more recent ones. This paper presents an advanced model 
that utilizes Bayesian statistics and decision theory for optimal bid price determination. The developed 
model is based on a three-stepped algorithm that enables drawings sound inferences in cases of 
incomplete historical data and dynamic behavior of competitors. The first step is fitting the competitors’ data 
into appropriate Bayesian prior density functions. The second step is developing the likelihood functions 
through recent observation(s). The third step is developing posterior distributions from which the joint 
probability of winning and optimum bidding price can be calculated. The proposed model was applied to a 
case study to demonstrate the effects of different parameters. The research will be beneficial to the 
transportation infrastructure economy by ensuring that contractors submit reasonably priced bids; which 
will make them less susceptible to claim-oriented behavior and eventually lead to healthier contracting. 

1 Introduction 

The transportation infrastructure is considered one of the major sectors in public spending and one of the 
most significant areas in construction. In fact, the total value of transportation construction was $125.7 
billion in 2014 (US DOT 2015). Moreover, currently, transportation projects constitute 11.6% of the total 
construction projects and 42% of the public construction projects (Census Bureau 2016). The American 
Society of Civil Engineers (ASCE) estimates that more than $2 trillion dollars are needed to rehabilitate and 
expand America’s existing transportation infrastructure (ASCE 2011). With this enormous volume of the 
current and upcoming transportation projects, wise investment is a must. Since most of the transportation 
projects are publicly funded, such projects are subject to competitive bidding where the qualified contractors 
with the lowest bid prices is awarded the projects. This ensures that taxpayers obtain the value for money 
and forces the contractors to pursue value engineering and adopt technological innovations (Lingard et al 
1998). The bid price 𝐵𝑖 for each contractor 𝑖 is the summation of the estimated total cost of the project 𝐶𝑖 

and the decided markup 𝑀𝑖 (Eq. 1); where 𝑀𝑖 is generally a percentage of the estimated total project cost 
that accounts for profits and unforeseen risks.  

[1]   𝐵𝑖 = 𝐶𝑖(1 + 𝑀𝑖%)      
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Higher markup percentage means more profits for the contractor, but also means lower probability of 
winning the bid since other competitors will be expected to submit lower bid prices. On the other hand, 
lower markup increases the probability of winning the bid but minimizes the profit. In this case, the contractor 
is susceptible for what is called the “winner’s curse”. The winner’s curse is the situation where the bidder 
with the lowest bid price wins the project contract based on a submitted bid less than the true cost (Ahmed 
et al 2016). In such case, the winner is cursed with negative profits. Generally, contractors who win bids 
with very low prices become claim-oriented since day one of the project. This results in quality deterioration 
and financial losses to the owner, which is eventually the taxpayers in transportation projects. As such it is 
essential that the contractor submits a bid with a reasonable price that is not too high or not too low. 
Determining the optimal bid price that maximizes the probability of winning and minimizes the winner’s 
curse is an endeavor that has been undertaken by construction researchers over the years based on the 
valid assumption that analyzing the competitors’ historic bidding patterns can improve a contractor’s 
strategic competitiveness (Friedman 1956, Capen et al 1971).  

Current statistical approaches for optimal bid price estimation require extensive historical data and complete 
information of the competitors’ bidding schemes. Moreover, the current models do not make the distinction 
between old historical data and recent historical data, but rather look at them as equally important data 
points. Such models do not hold in cases of competitors having dynamic bidding behavior; where they 
decided to shift their bidding scheme at a certain point in time. Also, they do not hold in case the available 
historic data is very old and not representative of the current bidding scheme. To tackle the problem of 
incomplete historic data and dynamic behavior of competitors, the authors opted to employ Bayesian 
statistics for its validated capability of dealing with uncertainties and behavioral dynamics (Bernardo 2011). 
The objective of this paper is to present a Bayesian-based statistical model for optimal bid price 
determination that is valid in cases of incomplete historical data and dynamic behavior of competitors.  

2 Background 

2.1 Frequentist Statistical Models Employing Decision Theory 

According to decision theory, the optimum bidding markup is the one that maximizes both the probability of 

winning and profits. Usually, a contractor will have his cost estimate 𝐶𝑗 for each of the previous bids 𝑗. Also, 

especially in transportation and other public projects, he would have the bid prices 𝐵𝑖𝑗 of each of his 

competitors 𝑖 in such bids. He would then use Eq. 1 to estimate the markup percentage of each of the 
competitors. Assuming that the cost estimate is not the same for each of the competitors, the contractor 
can add a stochastic variable 𝜎 which represents the expected variance of cost estimate between the 

contractor and the competitor 𝑖 in bid 𝑗. Accordingly, the contractor would represent each historic data point 
for each competitor as a density function instead of a discrete point. Finally, a probability distribution of 
markup percentages 𝑓𝑖(𝑟) is formed for each competitor by adding all the density functions of its 

corresponding data points; where, the probability 𝑃𝑖(𝑟) of winning competitor 𝑖 at markup 𝑟 is equal to the 
probability of competitor bidding with markup higher than 𝑟 (Eq. 2).  

[2]   𝑃𝑖(𝑟) = ∫ 𝑓𝑖(𝑟) 𝑑𝑟
∞

𝑟
 

If the contractor is competing against more than one competitor, he would obtain the probability of winning 
each competitor separately and then use Friedman’s formula (Friedman 1956) or Gates’ formula (Gates 
1967) to obtain the probability of winning all competitors. Friedman’s formula views the competitors’ bids 
as independent while Gates’ formula views them as dependent. Both formulas are widely accepted in the 
literature (Crowly 2000). Generally, Friedman’s formula results in a bid price with lower markup percentage 
than Gates’ formula. Accordingly, Friedman’s formula helps the contractor win more projects than Gate’s 
formula. However, due to the low markup, Friedman’s formula does not provide the contractor with high 
long-term profits as those of Gates’ formula (Benjamin and Meador 1979). Friedman’s formula is shown in 
Eq. 3 and Gates formula is shown in Eq. 4. According to decision theory, the optimal markup is the one at 
which a certain utility function is maximized. The utility function in this case is the expected profit; where 
the expected profit at any markup percentage is the multiplication of the probability of winning and the profit 
as shown in Eq. 5. 
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[3]   𝑃𝑤𝑖𝑛(𝑟) = ∏ 𝑃𝑖(𝑟)𝑛
𝑖=1  

[4]   𝑃𝑤𝑖𝑛(𝑟) = [∑ (
1−𝑃𝑖(𝑟)

𝑃𝑖(𝑟)
) + 1𝑛

𝑖=1 ]
−1

 

[5]   𝐸𝑃(𝑟) = 𝑟. 𝑃𝑤𝑖𝑛(𝑟)     

Significant works employing decision theoretic concepts in conventional statistical models are those of Yuan 
(2012), Yuan (2011), Skitmore et al (2007), Touran (2003), Lo and Lam (2001), Ranasinghe (2000), 
Skitmore and Pemberton (1994), Skitmore (1991), Carr (1982), Winkler and Brooks (1980), Dixie (1974), 
and Rosenshine (1972). 

2.2 Bayesian Statistics 

The two major domains in mathematical statistics are conventional (or frequentist), and Bayesian.  Bayesian 
statistics provide a more complete paradigm for both statistical inference and decision making under 
uncertainty (Bernardo 2011). Additionally, it makes it possible to incorporate scientific hypothesis, or 
educated ‘beliefs’, in the analysis by the means of the prior distributions when the available data is not 
sufficient to produce sound frequentist statistical inferences (Cowles 2012). According to Bayes’ equation 
(Eq. 6), there are two sources of information about the unknown parameters of interest; the prior distribution 
and the likelihood function.  

[6]   𝑝(𝜃|𝐷) ∝ 𝑓(𝐷|𝜃)𝜋(𝜃)         

The prior distribution 𝜋(𝜃) represents the original prior data based on the available information while the 

likelihood function 𝑓(𝐷|𝜃) represents the observed behavior of uncertainty. Based on those two sources of 

information, the posterior distribution 𝑝(𝜃|𝐷) is calculated according to Eq. 6. All statistical inferences are 
eventually gathered from the posterior distribution. The proportionality symbol ∝ means that the right hand 
side of the equation has to be normalized so that its integration over its support is equal to 1. The posterior 
function 𝑝(𝜃|𝐷) provides a weighted compromise between the prior information and the likelihood data in 
statistically sound environment (Cowles 2012). 

3 Methodology 

The Bayesian framework is what signifies the developed statistical model. The incorporation of Bayesian 
statistics is elucidated in the treatment of historical bidding data of competitors. In frequentist statistics, all 
historical data points are treated equally with similar weights and fitted in density functions. On the other 
hand, the developed Bayesian model makes the distinction between old historical data and the more recent 
historical data. In other words, the old historical data are represented in the prior distribution 𝜋(𝜃). The more 
recent observations are represented in the likelihood function 𝑓(𝐷|𝜃); where such observations are 
considered a good representative of the competitors’ current behavior. Accordingly, the model is sensitive 
to both the less recent and the more recent observations with stronger emphasis on the more recent ones 
because a competitor is more likely to continue its recent bidding pattern than to return to an older one. The 
developed algorithm can be divided into three stages: The first stage is fitting the competitors’ data into 
appropriate Bayesian prior density functions. The second stage is developing the likelihood functions 
through the most recent historic observation(s). The third stage is developing the posterior distributions 
from which the joint probability of winning and the expected profit can be calculated. Each stage has various 
steps. The following paragraphs provide explanations for such steps. 

3.1 Step 1: Preliminary Distribution Density Function (PDDF) 

There is stochastic variability between the cost estimate of the contractor and the cost estimate of each 
competitor in each single bid. This stochastic variability is referred to as 𝜎𝑖𝑗. For example, if 𝜎𝑖𝑗 = 1, then 

the firm expects that his cost estimate his competitor’s cost estimate in bid 𝑗 lies within a standard deviation 
of 1% of the cost estimate of the firm. In the developed model, a preliminary distribution density function 
(PDDF) is calculated for each competitor in accordance to Eq. 7. 
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[7]   𝑝𝑑𝑖(r) ∝ ∑ [𝑁 (𝑟|
𝐵𝑖𝑗×100

𝐶𝑗
− 100, 𝜎𝑖𝑗) (1 − ∅𝑖𝑗) + Г(𝑟|𝛼𝑖𝑗 , 𝛽𝑖𝑗)(∅𝑖𝑗)]

𝑛𝑖
𝑗=1  

In the PDDF function (Eq. 7), 𝑟 signifies the markup; where 𝑟 ∈ (0, ∞). Also, 𝑛𝑖 is the total number of 

available bid value data points for competitor 𝑖. The term 𝑁(𝑟|𝑥, 𝑦) refers to the normal distribution 

probability density function with mean 𝑥 and standard deviation 𝑦 on the support of 𝑟, and the term Г(𝑟|𝑥, 𝑦) 

refers to the gamma distribution probability density function with shape 𝑥 and rate 𝑦. The term 𝜎𝑖𝑗 reflects 

the contractor’s perception of variance between its cost estimate for bid 𝑗 and the cost estimate of its 

competitor 𝑖 for bid 𝑗. As shown in Eq. 7, for each competitor, each historic bid provides a normally 
distributed density with mean equals to the estimated markup of the competitor and a standard deviation 

of 𝜎𝑖𝑗; where the value of 𝜎𝑖𝑗 is project-dependent and not fixed for all projects or all competitors.  

The term ∅𝑖𝑗 is a binary variable; where ∅𝑖𝑗 = 0 if 𝐵𝑖𝑗/𝐶𝑖 ≥ 1 and ∅𝑖𝑗 = 1 if 𝐵𝑖𝑗/𝐶𝑖 < 1. This means that as 

long as the competitor’s bid price is higher than the contractor’s cost estimate in a certain bid, the normal 
distribution part of the function will be active. If the competitor’s bid price is higher than the contractor’s cost 

estimate, then the gamma distribution part will be active. Having 𝐵𝑖𝑗/𝐶𝑖 that is less than 1 is very uncommon. 

It might result from either 1) the contractor having an unreasonably high cost estimate, or 2) the competitor 
bidding for the project with negative markup. The gamma term represents what is called the educated belief; 
where the 𝛼𝑖𝑗 and 𝛽𝑖𝑗 parameters are inputted based on the contractor’s belief of the competitor’s markup 

density in such cases. Both the 𝛼 and 𝛽 parameters are non-zero non-negative parameters that collectively 
control the skewness, location of peak, and width of peak of the Gamma probability density function. The 
Gamma distribution is selected to represent the educated belief in this case because it is a shape shifter 
that can assume a range of shapes, and because its support extends in the positive real number range only 
from 0 to ∞. This ensures that the 𝑝𝑑𝑖(r) function does not have values in the negative r region. A final note 
about the PDDF is that the historical bids that are used in it are those which precede the “latest common 
bids”. The latest common bids are the less recent bids; further definition is provided in step 5.  

3.2 Step 2: Sampling from the PDDF 

In this step, for each competitor, independent and identically distributed iid random variables are sampled 
from its preliminary density function using Markov Chain Monte Carlo Metropolis-Hastings (MCMC M-H) 
algorithm. MCMC M-H is a technique of generating random variables following any desired probability 
density function (PDF), named the target distribution 𝑓, throughout simulated draws from an easy-to-sample 

PDF 𝑞(𝑦|𝑥), named the proposal distribution (Robert and Casella 2009). The use of MCMC M-H is essential 
in this step because the resulting PDDF does not follow any traditional parametric PDF, but rather a non-
parametric one. 

There are several mathematical requirements for a successful sampling using the M-H algorithm, however, 
these requirements are minimized if the Markov transition kernel is generated using a random walk following 
a symmetric distribution. A random walk means that each generated point is a function of the preceding 
generated point. The random walk allows for local exploration of random variables all over the support of 
the target function whilst maintaining the ergodic properties of the chain. To construct a Markov transition 
kernel 𝑋0, … , 𝑋𝑇 via the Metropolis-Hastings algorithm; given an initial random variable 𝑋𝑡, generate 𝑌𝑡 =
𝑋𝑡 + 𝜀𝑡 then obtain 𝑋𝑡+1 (Eq. 8 and 9); where 𝜀𝑡 is a random perturbation with a normal distribution of mean 

= 0 and standard deviation = 2. So for each simulation, a random variable 𝜀𝑡 is generated from 𝑔 and added 

to the preceding 𝑋𝑡.  

[8]   𝑋𝑡+1 = {
𝑌𝑡     with probability         𝜌(𝑥𝑡 , 𝑌𝑡)

 
𝑋𝑡     with probability 1 − 𝜌(𝑥𝑡 , 𝑌𝑡)

 

[9]   𝜌(𝑥, 𝑦) = min { 
𝑓(𝑦)

𝑓(𝑥)
 , 1 } 

The resulting Markov kernel will form the prior distributions. Since, computing powers of standard 
computers are very powerful, the number of simulations 𝑆 for each competitor is suggested to be 10,000; 
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where the first 1,000 simulations are not taken into consideration for they are considered the chain’s burn-
ins. The burn-in is for the purpose of insuring, in theory, the Markov chain is intrinsically equivalent to a 
standard iid simulation from 𝑓. The generated Markov chain for each competitor, which are the output of 

this step, are referred to as [𝑋1,001, 𝑋1,002  … , 𝑋10,000]
𝑖
. The numbering starts from 1,001 because the first 

1,000 points are eliminated for the chain’s burn, and ended at 10,000 because the total number of 
simulations (draws) is 10,000. The initial random variable 𝑋0 is proposed to be a number within the range 

of the markup percentages. The target function is 𝑝𝑑𝑖; which is obtained from step 1. The flow chart of the 
MCMC M-H algorithm is shown in the right part of Figure 1. 

3.3 Step 3: Finding Best Fit Probability Distributions for the Resulting Markov Chains 

The Markov chains obtained from the previous step are fitted in density functions that will be used as prior 

distributions. To do so, each of the resulting variables [𝑋1,001, 𝑋1,002  … , 𝑋10,000]
𝑖
 is named 𝑀𝑖𝑗 where 𝑀 

represents the markup percentage, 𝑖 represents the number of competitors and 𝑗 represents the number of 
generated random variables in the Markov chain of each competitor. Selecting the best fitting probability 
distribution from a pre-defined family of distributions requires a systematic procedure. This procedure starts 

with plotting the histogram of 𝑀𝑖𝑗 of each competitor. If the histogram has a single peak, then plot the Cullen-

Frey Graph; which is a graph that displays which parametric distribution best fits the dataset (Cullen, and 
Frey 1999). To ensure that the selected distribution is a good fit for the data, perform the one-sample 
Kolmogorov-Smirnov (K-S) test; which is a statistical nonparametric test that is used to compare a sample 
distribution with a reference probability distribution. The null hypothesis 𝐻0 is that the used probability 

distribution fits the data. The null hypothesis is rejected if the 𝑝-value is less than the desired significance 
level 𝛼. The most commonly used number for 𝛼 in these cases is 0.05 (Nuzzo 2014). Accordingly, if the 
selected probability distribution had a p-value higher than 0.05, then we conclude that it fits the data.  

Most parametric probability distributions have one significant peak. If the histogram of 𝑀𝑖𝑗 has multiple 

significant peaks, then the Cullen-Frey Graph and the K-S test will not be of any good. In such case, 
logspline fitting is recommended. The logspline fitting forms a function from a space of cubic splines that a 
finite number of pre-specified knots and are linear in tails (Kooperberg and Stone 1991). The K-S test, 
Cullen-Frey Graph, and Logspline fitting can be easily performed using statistical software packages. 

3.4 Step 4: Forming the Prior Functions 

The prior distribution 𝜋(𝜃)𝑖 for each competitor is the fitted distribution resulting from the previous step. 
Such prior distribution shall be normalized with a positive support. In cases of incomplete data where the 
contractor has little accurately recorded data of previous bids, the concept of educated belief should be 
utilized. As such, the contractor would use a prior distribution based on his expert judgement or on the 
concept of the average bidder. The concept of average bidder is proposed by Friedman (1956) and 
acknowledged by other researchers later (Capen et al 1971). The average bidder is a composite of all 
bidders that the contractor has faced in the past. If the user has very limited information about the 
competitor’s history and intends to form its corresponding prior distribution without sufficient information to 
form a good educated belief, the authors encourage him to use a probability distribution with parameters 
that result in a minimally informative prior. This is a traditional practice in Bayesian statistics (Bennet et al 
1996). A minimally informative prior is a one with an insignificant peak; such as a normal distribution with a 
large standard deviation, a Gama distribution with a small rate, or even a uniform distribution. The 
advantage of Bayesian statistics in this regard is that it allows for such incorporation without jeopardizing 
the statistical integrity of the solution. Despite that, still having complete and accurate data is much better 
and much credible than having incomplete data. 

3.5 Step 5: Forming the Likelihood Functions 

The latest common bids are those that are very recent and share commonality where they represent the 
current bidding strategies of the competitor. Such commonality can be in the recency; meaning that they 
are made within a short period of time. It can also be in factors affecting the bidding behavior such as the 
management team, project type, location, cost range, risk, and so on. No matter what the commonality is, 
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the recency commonality has to exist. Such commonalities strengthen the statistical significance given the 
conditional properties of the Bayesian statistics. A likelihood function 𝑓(𝐷|𝜃)𝑖 for each competitor 𝑖 is 
calculated only from the latest common bids (Eq. 10). 

[10]   𝑓(𝐷|𝜃)𝑖 ∝ ∑ 𝑁 (𝑟|
𝑍𝑖𝑘×100

𝐶𝑘
− 100, 𝜎𝑖𝑘)𝐾

𝑘=1  

where, 𝑁(𝑟|𝑥, 𝑦) is the normal distribution PDF with mean 𝑥 and standard deviation 𝑦, 𝐾 is the number of 

latest common bids, 𝑍𝑖𝑘 is the bid value of competitor 𝑖 in bid 𝑘, 𝐶𝑘 is the contractor’s cost estimate of project 

𝑘, and 𝜎𝑖𝑘 represents the stochastic uncertainty of the difference between the firm’s cost estimate for bid 𝑘 
and the cost estimate of its competitor 𝑖 for the same bid.  

3.6 Step 6: Obtaining the Posterior Distributions and Deciding on the Optimum Markup 

After obtaining the prior and likelihood function for each competitor, the posterior distribution 𝑝(𝜃|𝐷)𝑖 is 
calculated and normalized in accordance to Eq. 6. All of the preceding statistic inferences are made from 
the posterior distributions. In this step, the Bayesian concepts and the decision theoretic concepts meet. 
After calculating the posterior distribution for each competitor, set 𝑓𝑖(𝑟) = 𝑝(𝜃|𝐷)𝑖, then use Eq. 2 to 
calculate the probability of winning each of the competitors. Then use Friedman or Gates’s formulas to 
obtain the probability of winning all competitors. Both Friedman and Gates’ formulas are valid and each firm 
has the freedom to choose which ever suits its view of the bidding process. In the case study, the authors 
used both formulas and it was shown that there were no significant variances in the resulting optimal 
markups. The final step is to use Eq. 5 is used to calculate the expected profit 𝐸𝑃(𝑟) at each value of 
markup 𝑟. The optimum markup is 𝑟 where 𝐸𝑃(𝑟) is maximized.  

Figure 1 shows a flowchart demonstrating the heuristic of the of the developed Bayesian model. 

 

Figure 1: Methodology of the Developed Model 
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4 Case Study 

The developed model is tested on a case study from the literature. The historical data of bid prices were 
obtained from Skitmore-Pemberton (1994). The results were compared to those of models developed by 
Skitmore-Pemberton (1994) and Yuan (2011). The comparisons are not made to display the superiority of 
the proposed model; but rather to demonstrate its use, observe the differences between its results and 
those of other models to deduct behavior patterns, and illustrate the effects of different parameters. 

A total of four competitors were studied and analyzed. The available data were of real bids entered by a 
construction firm, where it recorded its own cost estimates 𝐶𝑗 and the bid prices of each of its competitors 

𝐵𝑖𝑗. The 4 competitors were coded 1, 55, 134, and 221 by the firm. Since the data did not specify which 

bids are to be considered as the latest common bids, the authors simulated two different scenarios. In 
scenario 1, the latest observation for each competitor is considered as the latest common bid; which is the 
bid that forms the likelihood function. In scenario 2, the latest two observations are considered the latest 

common bids. The used value of 𝜎𝑖𝑗 is 2% for all competitors. Moreover, since the stochastic variability 

between the firm’s cost estimate and the competitors’ cost estimate is not known, several values of 𝜎𝑖𝑘 were 
simulated. The values used for 𝜎𝑖𝑘 were 2%, 3%, and 4%. With regards to the Gamma distribution 

parameters (𝛼𝑖𝑗 and 𝛽𝑖𝑗), the following numbers were used in cases where the firm’s cost estimate exceeded 

the competitor’s bid price: For competitor 1, 𝛼𝑖𝑗 = 3 and 𝛽𝑖𝑗 = 1.3; for competitor 55, 𝛼𝑖𝑗 = 3 and 𝛽𝑖𝑗 = 2; 

and for competitor 134, 𝛼𝑖𝑗 = 5 and 𝛽𝑖𝑗 = 2. 𝛼𝑖𝑗 and 𝛽𝑖𝑗 were not required for competitor 221 because all of 

its bid prices exceed the firm’s cost estimates. In reality, when the proposed model is used by a firm, the 
assumptions will be minimal because the user firm will have all information. 

4.1 Results and Discussion 

The 6 steps of the model were followed. The PDDF of each competitor was calculated in accordance to Eq. 
7. The sampling was made using the MCMC M-H algorithm, where the acceptance rate of the Markov 
kernel ranged from 77% to 88%; which is a good acceptance rate because it is higher than 25%. Figure 2 
shows the convergence of the Markov chains and the resulting histograms. After the sampling, prior 
distributions were fitted to the resulting Markov chains and the fits were tested using the K-S test. The 
resulting prior function for competitors 55 and 221 follow the Weibull distribution with shape = 1.503 and 
scale = 4.22, and shape = 2.106 and scale = 7.181 respectively. For competitor 134, the logspline fitting 
was used to obtain its prior distribution because the histogram resulting from its Markov chain had more 
than one significant peak. For competitor 1, the available data points show that his bidding prices were 
lower than the firm’s cost estimate. Accordingly, the corresponding prior distribution was based on an 
assumption that such competitor is a risk taker and that his markup values are extremely low. As such, the 
prior distribution of competitor 1 follows the Gamma distribution with shape = 3 and rate = 1.3.  

 

Figure 2: The MCMC Convergence of Competitors and the Resulting Prior Distributions 
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The resulting optimum markup in the two scenarios are shown in Figure 3. The optimum markup and 
probability of winning were calculated for bidding against 6 combinations of the competitors. The 
combinations were selected this way to provide a comparison between the proposed model and the models 
of Skitmore-Pemberton and Yuan; given that they used the same combinations except for the last one. By 
comparing the results of Yuan’s model and those of Skitmore-Pemberton, it can be observed that Yuan’s 
optimum markup is much lower than Skitmore-Pemberton’s. The later takes the cost estimation error into 
consideration in an amplified way leading to higher markup values. However, Yuan’s markup values are 
close to those resulting from the developed model. What is for sure is that the models of Yuan and Skitmore-
Pemberton do not take the dynamic behavior of competitors into consideration in the same sense as the 
developed model does.  

 

Figure 3: Optimum Markup Determination (M) and Corresponding Probability of Winning (Pwin) 

When it comes to the developed model, it obtained markup values that are even less than those of Yuan’s 
model. Such low markups are a direct result of the made assumption that competitor 1 is a risk taker; where 
he always bids in low markups. It can be observed that, in all of the combinations that involve competitor 
1, the optimum markup never exceeded 1.62%. However, for the combinations that did not involve 
competitor 1, the optimum markup reached 2.90%. Generally, such low markups are also a result of the 
developed model’s inclusion of the dynamic behavior; which makes it more accurate than previous models. 
Accordingly, the more recent observations have a greater impact on the resulting optimum markup. In the 
case study, the recent observations of competitors had low bid ratios. 

In this case study the results were not very sensitive to 𝜎, meaning that the firm does not have to exert 

effort and time to estimate the value of 𝜎. However, with more certainty of the stochastic variance of cost 
estimating among competitors, the probability of winning increases. More certainty means a lower value of 
𝜎. For example, in the first scenario, the probability of winning competitors 55 and 221 at 𝜎 = 2 is 66.7%. 
With less certainty, where 𝜎 = 4, the probability of winning the same contractors is 57.1%. It shall be stated 
that no matter how high the probability of winning, winning is not guaranteed. Neither this model nor any 
other markup decision model guarantees winning bids. Competitors might take irrational decisions leading 
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to unexpected results. Figure 4 shows the expected profits and probability of winning all competitors in 
scenario 1 as a demonstration. 

 

Figure 4: Expected Profit and Probability of Winning All Competitors (Scenario 1) 

Finally, to be able to use the developed model in its full capacity, certain information of the historical bids 
of competitors have to be gathered more than just their bid prices. Such information includes the dates of 
the historical bids, the estimated stochastic variance of project cost between the firm and each of the 
competitor, and information on which bids to be considered the latest common bids as defined in this paper. 
In the case study, such additional information was not available so the model was run based on reasonable 
assumptions to demonstrate the different steps and parameters.  However, in reality, the assumptions will 
be minimal and there will be only one value for markup and one for probability of winning, leaving no room 
for errors. Also, a firm that opts to use the proposed model can do its own sensitivity analysis and scenarios. 

5 CONCLUSION 

The volume of transportation projects in the US is massive. Most of such projects undergo competitive 
bidding where the qualified contractors with the lowest bid prices are awarded the projects. Contractors 
submitting unreasonably low bid prices end up acquiring a claim-oriented behavior to recover their losses. 
Such behavior results in disputes related to quality degradation, schedule overruns, and cost overruns. As 
such, a healthy bidding environment will ensure disputes are minimal and costs are reasonable. Several 
models have been developed to help contractors determine their bid prices based on statistical analysis of 
competitors’ history; however, such models do not consider cases of imperfect information and dynamic 
behavior of competitors; where a competitor’s old behavior contradicts its more recent one. This paper 
presents a Bayesian-based statistical model for optimal bid price determination that is valid in cases of 
incomplete historical data and dynamic behavior of competitors.  

The authors presented the detailed algorithm of the model and employed it in a case study; where the 
results were compared to two other models from the literature review on the same case study. The purpose 
of the case study was to demonstrate the use of the model and illustrate the effect of different parameters 
on the resulting optimum markup and probability of winning. The results show that the more recent bidding 
strategies of competitors play a significant role in predicting the future ones.  The results also show that as 
the variability of cost estimates between a firm and its competitors increase, the optimum markup for that 
firm attain lower probability of winning. The model’s multi-stage approach accurately simulates the 
competitors’ dynamic behavior. Moreover, its ability to produce sound statistical inferences in cases of 
incomplete information is abstracted from the widely credible Bayesian statistical concepts. One important 
assumption, which is used in most models in the literature, is that the number of competitors competing in 
the given bid is known. The research will be beneficial to the transportation infrastructure economy by 
ensuring that contractors submit bids with reasonable prices; which will make them less susceptible to 
claim-oriented behavior and eventually lead to healthier contracting environments. The authors recommend 
applying the model to more case studies to be able to have better understanding of its behavior, 
advantages, and limitations. Moreover, extended research should attempt to combine non-cooperative 
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game theory with Bayesian statistics to provide a more holistic and comprehensive understanding of the 
bidding process in transportation projects. 
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