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Abstract: Developing the time requirements for highway transportation projects has always been a big 

challenge due to the differences in project scope, location, goals and size. It’s not uncommon for state 

transportation agencies (STAs) to produce inaccurate estimates of project durations, which leads to 

contractors not investing their maximum effort in a project. Several previous attempts have been made to 

make more accurate estimations by using different methods. The objective of this research is to find a new 

method able to produce accurate estimates by using historical data. This paper describes the preliminary 

steps of developing a tool with sample data from Montana’s Department of Transportation (MDT; DOT). 

The data provided by MDT consists of bid tabulations, budget estimates, and project type. This paper is 

part of an ongoing investigation so this model might not be the most accurate by the end of the project, 

mostly because of the details included in other databases recently received. Nevertheless, the paper will 

provide an overview of the approach used to conduct such investigation. The paper provides readers with 

an idea of which bid items are more significant on project durations and shows how a statistical model can 

estimate a project duration during the design phase of a project. 

1 Introduction 

Developing an accurate estimate of a project’s duration, especially during planning and design, is 

challenging. There are several factors that influence a project’s duration, such as change orders, materials 

shortages, changes in scope or drawings, poor planning, etc. (Kraiem 1987; Majoh and McCaffer 1998; 

Kalibe et al. 2009). One of the bigger challenges of developing accurate estimates is that these estimates 

are expected during the planning phase, before any of these challenges are encountered. As if this wasn’t 

enough, every project is different across multiple dimensions, including size, scope, goals, nature, and  

creating a big challenge for STAs to produce their estimated durations, which is very important for 

contractors’ commitment, life cycle cost analysis, project cost, and bid proposals, among others (Williams 

2006; Ifran et al. 2011). 

This research’s objective is to help fulfill the niche of accurate schedule estimations by developing a 

statistical tool that uses historical bid data to predict projects’ durations based on their characteristics. In 

this paper, the authors present how a stepwise regression model was built as a preliminary time estimation 
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tool based of MDTs sample data. Although not definitive, the results of this process are very encouraging 

with very limited data, which suggests that a better model can be developed by incorporating more detailed 

data provided by different states involved in this study effort, which includes MDT. 

2 Literature Review 

The first scheduling models were based on linear relationships between cost and duration (Fulkerson, 

1961). Cost-schedule relationships have evolved with time to more complex non-linear relationships, such 

as concave (Falk and Horowitz 1972), hybrid of both (Moder et al. 1995), quadratic (Deckro et al. 1995), 

and discrete formulations (Skutella 1998; Zheng et al. 2004). Recently, researchers have created piecewise 

discontinuous time-cost functions (Moussourakis and Haksever 2004, Yang 2005), and other variables 

have been added to create a more complex relationship with scheduling, such as contract type 

(Anastasopoulos 2007). 

A concept that has been recently gaining popularity is parametric estimating modeling, which allows the 

use of multiple factors or parameters to produce more statistically significant estimates. The three 

justifications used by Zhai et al. (2016) to use parametric modeling for STAs are the following: 1) high 

correlation between durations and bid quantities; 2) highway construction projects are repetitive, linear in 

nature, and construction methods are similar across the US; and 3) historical databases are used to develop 

parametric models. Even though parametric methods have been widely used in cost estimating modelling, 

they have been almost ignored in time estimation for construction projects. Parametric modeling has been 

used in estimating scheduling for highway projects by different authors: Boussabaine and Elhag (1997) 

used a combination of fuzzy systems and artificial neural networks; Jiang and Wu (2007) created a 

regression model using data from projects of Indiana’s DOT executed between 1995; Liu et al. (2011) 

estimated the influence of random factors using Monte Carlo simulation; and Zhai et al. (2016) created a 

multiple regression model using 2,503 projects. 

Even when multivariate regression analysis was used by Zhai et al. (2016), this research uses it to develop 

a parametric model to estimate project duration for MDT. This paper’s contribution to the body of knowledge 

is the testing multivariate regression analysis’s applicability to MDT and future research will include data 

from other DOTs to develop a more complex model. 

3 Current State-Of-The-Practice for Time Estimation Modeling 

Currently, the construction industry uses a variety of cost and scheduling software that have been created 

by researchers and software developers though time. Some examples of these software are RSMeans® 

and WinEst, that use historical daily rates and wages, or Pertmaster and @Risk, add-ins to Primavera and 

excel respectively, which rely on probabilistic modelling of risk. Regarding STAs, 58% (29 out of 50) have 

contract time determination procedures available online (Taylor et al. 2012). Taylor et al. (2012) wrote that 

28% of these 29 states’ models are based purely on production rates, 17% use job logic without considering 

production rates, and 49% use a combination of production rates and job logic. Although most states have 

developed tools for time estimation, Taylor et al. (2012) found that they have very poor accuracy, ranging 

the 100% margin. Per the FHWA (2016), the most popular cost/schedule estimating software used by STAs 

are: AASHTOware Project © Estimator, HCSS HeavyBid, Cost Estimate Validation Process (CVEP), Long 

Range Estimate, and Estimate Bid Analysis Systems (EBASE). 
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Linear Regression 

This research uses a multivariate linear regression analysis to develop the MDT models and it’s described 

as follows: 

 

Υ =  β0 +  β1X1 + ⋯ + β1Xn +  ϵ 

 

ϵ ~ NID(0, σ2
ϵ) 

 

βi (i = 1 to n) 

 

where: 

 

= dependent variable, Charge Days 

 = regression coefficient (see first model), 

X = observed value of independent variables, 

 = random error term or noise (accounts for all other factors that affect Y than X), and 

NID= normally and independently distributed. 

 

The regression model assumes the following are true about the error term (): 1) population mean of  is 

zero, 2) i have the same variance σ2
𝜖 for all values of X, and 3)  is normally and independently distributed. 

 

Stepwise regression was used to optimize this model as it minimizes impacts of multicollinearity, takes into 

consideration more relevant models during the iterations to obtain the best model, and limits the number of 

independent variables by including only those with high statistical significance (Zhai et al. 2016). 

4 Data Collection 

The data provided by MDT consisted of 259 sample projects executed between 2009 and 2015, and 43 

different bids. The data provided for each project included: critical project dates (award, notice to proceed, 

completion, etc.), charged days, Engineer’s Estimate (EE), and several bid item quantities, which had to be 

grouped within similar categories per daily rates, according to RSMeans®, due to the high ratio of 

independent variables (bid items) to sample size (number of projects). Independent variables were reduced 

from the original 43 bid items to 19, as shown in Table 1. Another adjustment that had to be made to the 

data that’s worth mentioning, is the conversion of all the EEs to the same year (2015) to account for inflation. 

This was achieved by using the National Highway Construction Cost Index (NHCCI) (FHWA 2015). 
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Table 1. Grouped Bid Items Frequency 

 

 

 

Table 2 shows the different project types, as provided by MDT. This factor was not modified to run the 

regression, since it is a nominal variable with twenty different values and not 20 different variables. 

 

Table 2. Types of Projects 

 

 

Position Bid Item Freq. Position Bid Item Freq. 

1 Crushed aggregate course 177 11 Commercial Asphalt mix 3_4  20 

2 Plant mix 3 4 96 12 Plant mix 9mm 19 

3 Excavation unclassified 92 13 Commercial mix 3 8 6 

4 Gen. Asphalt commercial mix  82 14 Plant mix 1 2 4 

5 Special borrow neat line 67 15 Plant mix 3 8 4 

6 Embankment in place 57 16 Commercial mix mm  3 

7 Steel 41 17 Concrete class structure 2 

8 Excavation borrow 32 18 Concrete class deck 1 

9 Concrete Class DD Bridge 31 19 Concrete class SD repair 1 

10 Concrete General 31    

Project Type Freq. Project Type Freq. 

Overlays  87 Signals 3 

Reconstruction, Grading 60 Miscellaneous 2 

Bridge construction, rehab, and removal 28 Portland cement/concrete pavement 2 

Safety 27 Bike and pedestrian 1 

Slides or slope stabilization 14 Crack seal 1 

Seal and cover 13 Fencing 1 

Rehab (minor grade and overlay) 6 Micro-surfacing 1 

Guardrail 4 Scour Projects 1 

Drainage 3 Sidewalk 1 

Environmental and Wetland 3 Signing 1 
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5 FINDINGS: MODEL DEVELOPMENT 

The statistical method used in this model, as mentioned previously, is stepwise regression. In this method 

the regression runs an iterative process that removes not statistically significant variables until the optimal 

model is produced, and the output includes only those statistically significant factors when the model 

reaches the highest possible coefficient of determination (R2). Since R2 is no warranty of the predictive 

accuracy of the model, 20% of the data was set aside to use as validation while the model was created 

using the other 80%, known as train/test in machine learning. To validate the data, the predicted value of 

the independent variable – charge days – was compared to the actual – observed – duration of the projects 

used to validate and the percent error was determined by using the following formula (Zhai et al. 2016). 

 

Percent Error =  
|Predicted Value − Observed Value|

Observed Value
×100 

 

Given the nature of the projects, and the fact that not all projects had the same number of predictors, 

extreme outliers were present, which skewed the data. Because the data was skewed, the median was 

used as a central tendency measure instead of the commonly used mean. Several iterations of the model 

are explained below, including different characteristics for each iteration. 

 

5.1 First Model Iteration (General Model) 

The first model developed by the team was a general model, including all project types and sizes, but still 

using only 80% of the data. 

 

Y = 44.532 + 9.253E − 6 ∗ X1 + .008 ∗ X2 + .001X3 + 5.421E − 5 ∗ X4 + .002 ∗ X5 + ε 

Goodness of fit F=121.354, significance =.000, Adjusted R2=.746, Mean Percent Error= 44.59%, Median 

Percent Error= 29.54%. 

 

where: 

X1: EE (2015 USD) 

X2: CONCRETE_GENERAL (CY) 

X3: SPECIAL_BORROW_NEAT_LINE (CY) 

X4: EXCAVATION_UNCLASSIFIED (CY) 

X5: PLANT_MIX_1/2”(Ton) 

 

After running the first model and analyzing the descriptive statistics of the Engineer’s Estimates (EEs), the 

most important predictor, the team split the data into three subgroups by budget size. The first group 

(second model) consisted of projects with budgets ranging between $0 and $1,000,000; the second (third 

model) one for projects that ranged between $1,000,001 and $3,000,000; and the third (fourth model) for 

projects with EEs greater than or equal to $3,000,001. 
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5.2 Second Model 

The second model was developed based on only the projects within the range explained before 

($0,$1,000,000], so the sample size was 91 projects. 73 were used to build the model and 18 were used 

for validation. The results of this analysis were the following: 

 

Goodness of fit F=8.344, significance =.000, Adjusted R2=.237, Mean Percent Error= 58.75%, Median 

Percent Error= 24.75% 

 

5.3 Third Model 

The third model’s sample size was 76 projects. 60 were used to build the model and 16 were used for 

validation. The results of this model are as shown below: 

 

Goodness of fit F=14.592, significance =.000, Adjusted R2=.48, Mean Percent Error= 22.42%, Median 

Percent Error= 19.35% 

 

5.4 Fourth Model 

The fourth model had a sample size of 93 projects. 73 were used to build the model and 20 were used for 

validation. The results of this model are: 

 

Goodness of fit F=27.641, significance =.000, Adjusted R2=.649, Mean Percent Error= 42.28%, Median 

Percent Error= 19.59% 

5.5 Model Summary 

As seen in the models explained above, the first model delivers a larger R2, but that doesn’t mean it’s better 

at predicting the outcome variable, as can be seen in the mean and the median percent error, which are 

computed during the validation process, are higher than in the other models (except for the mean error for 

the second model). A second remarkable observation is that the projects’ size is proportional to R2 – when 

one increases the other one does the same – and is inversely proportional to the median percent error – 

project size increases and median percent error decreases –, so the model becomes better at predicting 

the dependent variable, charge days. Lastly, it’s worth mentioning that, even when all the variables were 

included in each model, the significant predictors were not always the same. For example, crushed 

aggregate was highly significant for the fourth model, but it did nothing at predicting charge days on the 

third model, meaning that different project sizes do require different models to use as estimating tools so 

they shouldn’t be analyzed as equals. 

 

6 Conclusions 

Current DOT time estimation systems’ accuracy is not suitable for such important agencies as STAs, 

affecting their construction practices. Poor estimation can negatively impact contractors’ commitment, bid 

proposal pricing, project costs, and even life-cycle cost analyses (Williams 2006; Ifran et al. 2011). It also 

affects the end user. The duration estimating model presented exhibits significantly greater accuracy than 

the current STA schedule estimating practices. 

 Even though this model shows promise, there are several steps that are required before disseminating it 

to all STAs. Although the model is accurate, a richer dataset is available to strengthen the model and the 

team is already working towards developing better models by including more factors, such as other bid 

items, delivery methods, projects’ locations (to control for topography and other factors influenced by 
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location), projects’ condition (new vs. old), project size, etc. Future research includes using the presented 

approach in DOTs throughout the US, determining its national, and even universal, applicability. Another 

goal is to develop a Microsoft Excel-based estimating tool and test the accuracy and applicability for easy 

use of the model on STA project level. 

Future research goals include testing the model’s applicability at a nationwide level and developing the 

mentioned Excel-based model to be used by STA planners. In order for this to happen, the existing model 

has to be strengthened and tested on multiple DOTs. 
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