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Abstract: Tower cranes are critical equipment in major construction project due to the high dependence 
on them for material handling and the high cost associated with their operation. As such, it is very desirable 
to maximize the efficiency of utilizing tower cranes in different construction operations. To achieve this goal, 
the problem is formulated as an optimization model with the objective of minimizing the tower crane travel 
time between supply and demand points. Minimizing the total travel time will in turn lead to reduction in the 
costs incurred due to transportation of materials. Previous models attempted to optimize the tower crane 
location using different approaches, such as mathematical techniques and evolutionary algorithms (EAs). 
However, none of the previous studies considered ant colony (ACO) as an optimization tool despite its 
notable performance in solving the non-linear quadratic assignment problem. This paper presents a 
modified ant colony optimization approach (MACA) and its application to the tower crane allocation problem. 
A comparison was conducted between the performance of ACO and MACA in solving the tower crane 
allocation problem. The results show that MACA outperforms ACO and offers significant computing 
capabilities that can also be used for other optimization problems. 

1 INTRODUCTION 

Tower cranes are essential construction equipment that can be seen in many cities around the world. There 
are many standards and codes that apply to tower cranes, which can vary depending on the country. 
Countries like the United States and Canada have adopted consensus standards through organizations 
such the American Society of Mechanical Engineers (ASME) and the Canadian Standard Association 
(CSA), which include voluntary practices applicable to tower cranes. Other countries, such as European 
nations and China, enforce mandatory practices through the European Committee for Standardization 
(CEN) and Chinese Standards (Shapiro et al. 2010). 

Tower cranes are prominent in construction sites because of their versatility in handling various tasks, and 
their large load capacity. For example, tower cranes has a much larger load capacity compared to mobile 
cranes. They can carry load at much higher altitudes, and supply many different locations while situated at 
one location (saving space). However, there are factors that can affect tower crane performance, which 
include site conditions – obstructions or surrounding buildings – weather conditions, weight of material, 
motor capacities, height of tower, distance between facilities, and operator’s skill. Additionally, tower cranes 
often come with high costs such as setup and installation fees, rental charges, and disassembly costs. 
Thus, optimizing the allocation of tower cranes is critical to maximizing their efficiency and minimizing the 
amount of their idle time. 
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1.1 Past Models 

Several studies have attempted to optimize the allocation of a tower crane in construction sites. Rodriguez-
Ramos and Francis (1983) were the first authors to provide a mathematical model for the optimization of 
the tower cranes’ hook travel time. Their model considered the angular and radial movements of the crane 
for calculating the travel time. Choi and Harris (1991) incorporated the frequency of the movements of the 
crane to its surrounding facilities. This was an addition to the model presented by Rodriguez-Ramos and 
Francis and was applied to a theoretical case study in an attempt to optimize the crane’s hook travel time. 
Zhang et al. (1996) utilized Monte Carlo simulation and a refined hook travel time formulation to the tower 
crane allocation model. The Monte Carlo was used to simulate the delivery sequence and time it takes for 
the tower crane to service its surrounding facilities. In 1999, Zhang et al. expanded their previous work by 
accounting for the vertical travel time of the hook as well as considering multiple cranes on site.  Tam et al. 
(2001) presented a tower crane optimization model using a genetic algorithm (GA). This approach was the 
first model to introduce evolutionary algorithms (EAs) in optimizing the tower crane allocation problem using 
actual velocity values from site observations. The authors later expanded their research in 2003 and 
presented a model that combined GA and artificial neural networks (ANN). The end result was a statistical 
representation of the hoisting time that produced acceptable results. Almost a decade later, Huang et al. 
(2011) presented a tower crane optimization model using mixed integer linear programming (MILP). Their 
model has the capacity to find global optimal solution; they demonstrated the great performance of  their 
work in comparison to GAs. Izarry and Karan (2012) combined the advantages of building information 
modeling (BIM) and geographic information system (GIS) to allocate multiple tower cranes. Their model 
provided superior site coverage while reducing the possibility of conflicts between the cranes. In 2014, Lien 
and Cheng presented a model that optimized the tower crane location using another evolutionary approach 
particle called bee algorithm (PBA). This technique encompassed the best traits from bee algorithm (BA) 
and particle swarm optimization (PSO). The authors applied their methodology to the case study set by 
Tam et al. (2001) with optimized quantity of materials for the supply points. Abdelmegid et al. (2015) 
developed a GA model and incorporated improvements to the previous models in terms of number of 
cycles, vertical hook travel time, and tower crane base. Marzouk and Abubakr (2015) created a 
comprehensive framework utilizing GAs and BIM to assist managers and planners with allocating the tower 
crane and select its appropriate type. Similarly, Wang et al. (2015) utilized BIM with a the firefly algorithm 
(FA). Their model outputs the final layout for a construction project. Tubaileh (2016) developed and 
incorporated kinematic and dynamic models to accurately portrait the hoisting operations of the crane. 
Using simulated annealing (SA) algorithm and the case study by Huang et al. (2011), Tubaileh achieved 
different results due to the more accurate velocity considerations. Nadoushani et al. (2016) provided a 
model that incorporated the relationship between the tower crane’s lifting capacity and total costs incurred. 
The authors considered the crane’s load capacities as a constraint in their model and optimized the location 
with MILP. Treviño and Abdel-Raheem (2017) incorporated ant colony optimization (ACO) to the single 
tower crane allocation problem. Their work was the first to consider the use of this algorithm and it was 
applied to a case study. \ 

1.2 Limitations of Previous Models  

Although many of these models made significant contributions to the tower crane allocation problem, they 
were limited in their usefulness due to unrealistic assumptions, calculation errors and discrepancies, and 
confusing terminology. Rodriguez-Ramos and Francis (1983) used their methodology on simple theoretical 
problem that did not consider the vertical movements of the crane. The optimization model by Choi and 
Harris (1991) only accounted for four predetermined positions for the tower crane and failed to consider 
other available locations. A major weakness in the work by Zhang et al. (1996) was the incorrect formulation 
of the hook’s angular time (Treviño and Abdel-Raheem, 2017). This error has been carried out throughout 
the literature in many studies except for the Abdelmegid et al. (2015). Zhang et al. (1996) also discussed 
using an effective algorithm to determine a feasible area where the crane can be positioned, but did not 
provide any details on the selection of the area. Tam et al. (2001) utilized Gas, but their model contained a 
number of predetermined tower crane positions that made the selection process somewhat trivial. In the 
work of Huang et al. (2011), there some discrepancies such as the alpha and beta parameters and the 
incorrect angular travel time formulation. This creates difficulties to the researchers when trying to recreate 
their work. Izarry and Karan (2012) did not discuss the cost functions or the objective function in their work. 
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Lien and Cheng (2014) did not provide details regarding the values of the quantities of materials and used 
different alpha and beta parameters without explanation. Abdelmegid et al. (2015) developed improvements 
to the previous tower crane allocation models, but did not clearly explain or illustrate the incorporation of 
the claimed improvements in their objective function. The model by Nadoushani et al. (2016) incorporated 
the same angular formulation error that other works used. In addition,  they did not provide all data used in 
their model. When it comes to the usage of ACO by Treviño and Abdel-Raheem (2017), the authors 
considered each tower crane location as a separate nest, but did not consider communication between the 
nests of ants. This creates an inefficient system because all nests, regardless of their location with respect 
to the food source, send out the same number of ants in their search. To illustrate this concept, a 
hypothetical example is shown in Figure 1. 

 

Figure 1.Distance between Nests and Food Source 

In the illustration, there are four ant nests and one food source. The nests are at different locations from 
the food source, but Nest #1 is the closest one. Assuming that all nests are interconnected and cooperate 
with each other, it would be wasteful for all the ants further from the food source to travel the longer path 
when the ants in Nest #1 are closer. Thus, utilizing ACO for a tower crane allocation problem with many 
crane locations presents a special case to be considered. 

As such, the objective of this paper is to address this missing piece of information from ACO by providing 
a modification to the approach and make it suitable to solve these special types of tower crane allocation 
problems. 

1.3 Methodology 

In order to achieve the aforementioned objective, the general ACO approach was modified to enhance its 
performance. This modification, entitled Modified Ant Colony Approach (MACA), incorporated the utilization 
of a lead ant that provides the missing information to the rest of the ants at different nests. A case study 
from the literature was selected for the application of both ordinary ACO and MACA. Results and 
comparisons were made followed by concluding remarks. 

2 BACKGROUND 

2.1 ACO 

Ant colony optimization (ACO) is a swarm-based artificial technique created in 1992 by Marco Dorigo based 
on the foraging behavior of ant colonies as they search for food. Ants are mostly blind, so they deposit 
pheromone as they travel to guide themselves. When an ant finds food, it uses its pheromone trail to return 
to the nest while depositing more pheromone. The ant that gets to the source of food fast – the ant with the 
shortest path – tends to deposit more pheromone than the rest of ants. This leaves a strong pheromone 
concentration on its route. Eventually, nearby ants detect the higher concentration and converge towards 
the shortest path.  
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2.2 MACA 

MACA follows the ACO theory with a few exceptions. The principal difference is that MACA is based on the 
assumption that there are several nests that accommodate the members of the ant colony. All ant nests 
cooperate and exchange information to achieve a goal. This exchange of information is done with the aid 
of an agent called “Lead Ant”. The ants get out of their nests searching for food, the lead ant gathers 
performance information on each of the nests and ranks them according to their best solution. Afterwards, 
the lead ant manipulates and distributes the ant population in a way such that the higher ranked nests 
accommodate more ants. This process aids the ant population converge to the nest that leads to the 
shortest path (best solution). A flowchart illustrating the general idea of this approach is shown in Figure 2. 

 

Figure 2. Flowchart of MACA general steps 

The generic ACO and MACA follow six basic steps (Abdel-Raheem et al. 2013): 

1. Generating trial solutions. A population of ants is created. Each ant has a number of variables, 
V, and each variable encompasses an option, j, and a pheromone concentration. In MACA, the a  
lead ant is additionally generated. To solve the tower crane allocation model, the ant can be 
modeled in a number of distinct ways as shown in Figure 3. For example, one way is to simply 
allocate the tower crane coordinates to the ant variables, such as in Figure 3b. Another way is to 
have the ant variables contain the facilities in need of service by the crane, as seen in Figure 3c. 
This string of facilities, or ant tour, would then represent a certain sequence of deliveries that the 
crane performs in the given order. As such, the variables are the series of supply and demand 
facilities in order. The lead ant can be modeled to give binary instructions for determining which 
nest receives part of the ant population as seen in Figure 4, where “0” represents an empty nest 
and “1” indicates the presence of ants. 

 

 

Figure 3. Ant variables in theory and related to tower crane allocation problem 

a. Theoretical ant variables b. Tower crane location variables c. Supply-demand sequence 
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Figure 4. Lead Ant decision making 

2. Heuristic Information. This step designates a piece of information that aims to guide the ant during 
its search. By giving the ant hints about the problem’s optimal solution, the ant can shorter time to 
find it. Thus, this information changes depending on the problem and its nature. For example, if the 
objective function is maximization, the ant’s total tour length can be taken as the heuristic 
information. In the tower crane allocation problem, the total distance between the crane and 
surrounding facilities can be used. This step is the same for both ACO and MACA. 

3. Evaluation. In ACO, the ants undergo an evaluation process by comparing their values to the 
problem’s objective function. In MACA, the ants follow the same evaluation process, but the lead 
ant might have a different objective function than the colonies. To limit the population of ants in the 
nests with low merit, Equation 1 and 2 can be used, where 𝑇𝐶 (𝑖) is the value of the nest 𝑁 and 
𝐶(𝑖) is a binary variable to help with the distribution process. 

[1] ∑ 𝑇𝐶 (𝑖) ∗ 𝐶(𝑖)𝑁
𝑖=1  

[2] 𝐶(𝑖) = ∑ {
1 𝑖𝑓 𝑁𝑒𝑠𝑡 (𝑖) 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

𝑁
𝑖=1  

Common objectives for the tower crane allocation problem include the minimization of the total 
costs and the hook travel time. 

4. Pheromone Update. At the end of the tour, the algorithm update the pheromone concentration on 
the paths selected by the ants by allocating more pheromone to the better paths. This pheromone 
update is performed using Equation 3,  

[3] 𝜏𝑖𝑗(𝑡) = 𝜌 ∗ 𝜏𝑖𝑗(𝑡 − 1) + ∆𝜏𝑖𝑗 

where 𝜏𝑖𝑗(𝑡) is the new pheromone concentration at iteration 𝑡, 𝜌 is the pheromone evaporation 

rate, 𝜏𝑖𝑗(𝑡 − 1) is the pheromone concentration associated with option 𝑗 of variable 𝑖 at the previous 

iteration, and ∆𝜏𝑖𝑗 is the change in pheromone concentration. The pheromone evaporation rate 

prevents early convergence and allows ants to explore other routes. The change in pheromone 
concentration can be calculated using Equation 4,  

 [4] ∆𝜏𝑖𝑗 = ∑ {
𝑅

𝑓(𝜑)𝑘
 𝑖𝑓 𝑜𝑝𝑡𝑖𝑜𝑛 𝑙𝑖𝑗  𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

𝑀
𝑘=1  

where 𝑅 is the pheromone reward factor, 𝑓(𝜑)𝑘 is the objective function value of ant k, and 𝑀 is 
the ant population.  

In MACA, the pheromone concentration is distributed according to the relative fitness of all ants. 
For example, if there are three tower crane locations (nests) with values of 10, 20, and 30, 
respectively, and the objective is maximization, the relative fitness of each nest is 50/10, 50/20, 
and 50/30, respectively. Obtaining a percentage based on the total would result in 55%, 27%, and 
18% for the three locations, respectively. 
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5. Probability Update. Each option, j, is associated with a certain selection probability. This 
probability is determined by Equation 5,  

 [5] 𝑃𝑖𝑗(𝑘, 𝑡) =
𝜏𝑖𝑗(𝑡)𝛼∗𝜂𝑖𝑗

𝛽

∑ 𝜏𝑖𝑗(𝑡)𝛼∗𝜂𝑖𝑗
𝛽 

where 𝑃𝑖𝑗(𝑘, 𝑡) is the probability of ant, k, choosing option j for variable i at iteration t, 𝜏𝑖𝑗(𝑡) is the 

pheromone concentration associated with option lij at iteration t, 𝜂𝑖𝑗 is the heuristic value, and 𝛼 

and 𝛽 are factors that reflect importance of either pheromone concentration or heuristic information 
in finding the optimal solution (Elbeltagi et al. 2005). This step is the same for ACO and MACA. 

6. Termination. The algorithm terminates if it meets a stopping criteria. This can be after an executed 
number of iterations or a specified interval of time. 

3 ACO AND MACA MODELING AND IMPLEMENTATION 

3.1 Case Study 

A case study from the literature presented by Huang et al. (2011) was selected for implementation and the 
comparison of both ACO and MACA. The objective in this tower crane model is to minimize the total costs 
associated with the travel time of the crane based on Equation 6,  

[6] 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶 = ∑ ∑ ∑ 𝑇𝑖,𝑗
𝑘 ∗ 𝑄𝑙,𝑗 ∗ 𝐶𝐿

𝑙
𝐽
𝑗

𝐼
𝑖  

where 𝑇𝑖,𝑗
𝑘  is the total transportation time between supply 𝑖 and demand 𝑗 from tower crane located at 

position 𝑘, 𝑄𝑙,𝑗 is the quantity of material 𝑙 required at demand 𝑗, and 𝐶 is the cost per unit time. 

The total transportation time 𝑇𝑖,𝑗
𝑘  can be calculated using Equation 7,  

[7] 𝑇𝑖,𝑗
𝑘 = 𝛾{𝑀𝑎𝑥(𝑇ℎ𝑖𝑗

𝑘 , 𝑇𝑣𝑖𝑗) +  𝛽 ∗ 𝑀𝑖𝑛(𝑇ℎ𝑖𝑗
𝑘 , 𝑇𝑣𝑖𝑗)} 

where 𝛾 is a factor that describes the difficulties the crane operator might encounter, 𝑇ℎ𝑖𝑗
𝑘 is the horizontal 

travel time of the hook by tower crane 𝑘 moving from supply 𝑖 to demand 𝑗, 𝛽 is a factor that describes how 
consecutive or simultaneous the movements of the crane are along the horizontal and vertical planes, and 
𝑇𝑣𝑖𝑗 is the vertical hoisting time experience by the crane lifting a load from supply 𝑖 to demand 𝑗. 

Further, the horizontal and vertical components can be seen in Equations 8 and 9, respectively,  

[8] 𝑇ℎ (𝑖,𝑗)
𝑘 = 𝑀𝑎𝑥(𝑇𝑟 (𝑖,𝑗)

𝑘 , 𝑇𝜔 (𝑖,𝑗)
𝑘 ) +  𝛼 ∗ 𝑀𝑖𝑛(𝑇𝑟 (𝑖,𝑗)

𝑘 , 𝑇𝜔 (𝑖,𝑗)
𝑘 ) 

[9] 𝑇𝑣 (𝑖,𝑗)
𝑘 =

𝑆𝑗
𝑧−𝐷𝑗

𝑧

𝑉ℎ
 

where 𝑇𝑟 𝑖,𝑗
𝑘  is the radial travel time of the trolley from tower crane at location 𝑘 moving from supply 𝑖 to 

demand 𝑗, 𝑇𝜔 𝑖,𝑗
𝑘  represents the angular travel time of the crane rotating from supply 𝑖 to demand 𝑗, 𝛼 is a 

factor that denotes how consecutive or simultaneous the crane movements are along the horizontal plane, 
𝑆𝑗

𝑧and 𝐷𝑗
𝑧 represent the height of both the supply and demand facilities, and 𝑉ℎ is the hoisting velocity of 

the crane. Both 𝛼 and 𝛽 can have values from 0 (fully simultaneous movement) to 1 (complete consecutive 
movements) (Zhang et al. 1999). 

The radial and angular travel time formulations are shown in Equation 10 and 11, respectively,  

[10] 𝑇𝑟 (𝑖,𝑗)
𝑘 =

|𝜌(𝐷𝑗,𝐶𝑟𝑘)−𝜌(𝑆𝑖,𝐶𝑟𝑘)|

𝑉𝑟
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[11] 𝑇𝜔 (𝑖,𝑗)
𝑘 =

1

𝑉𝜔
∗ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝜌(𝐷𝑗,𝐶𝑟𝑘)
2

+𝜌(𝑆𝑖,𝐶𝑟𝑘)2−𝑙𝑖,𝑗
2

2∗𝜌(𝐷𝑗,𝐶𝑟𝑘)∗𝜌(𝑆𝑖,𝐶𝑟𝑘)
) 

where 𝜌(𝐷𝑗 , 𝐶𝑟𝑘) is the linear, Cartesian distance between crane location 𝑘 to demand 𝑗, 𝜌(𝑆𝑖 , 𝐶𝑟𝑘) is the 

distance from the crane 𝑘 to supply 𝑖, 𝑉𝑟 and 𝑉𝜔 are the radial and angular velocities, respectively, and 𝑙𝑖,𝑗 

is the distance between supply 𝑖 and demand 𝑗. It is important to note that Equation 9 is based on the 
corrected formulation from Treviño and Abdel-Raheem (2017). 

The case study consisted of 12 predetermined tower crane locations and nine predetermined supply and 
demand points. Material quantities were taken as 10, 20, and 30 for material type 1, 2, and 3, respectively. 
The unit cost, 𝐶, was $1.92 per minute and the hoisting, radial, and angular velocities are 60 meters/min, 
53.3 meters/min, and 7.57 rad/min respectively. The hypothetical site plan from the case study, where each 
nest represents a tower crane location and the supply and demand are the sources of food is shown in 
Figure 5. 

 

Figure 5.Case study site plan (Huang et al. 2011) 

3.2 Ant Modeling 

The modeling of the ant is the same in  ACO and MACA, as shown in  Figure 6. Each ant has three variables 
that represent the three material types available and each variable holds the supply points that will be used 
to supply all demands. If a supply is selected in a variable, however, it cannot be used to supply the 
remaining demand points for the same ant. 
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Figure 6. Ant solution example 

In MACA, it is important to note that the pheromone update is done per nest, and pheromone cannot be 
added to the same supply point chosen in two different nests. For example, if an ant in Nest 1 selects supply 
1 for its first variable and deposits pheromone in that option, an ant in Nest 2 selecting supply 1 for its first 
variable will not be adding pheromone to that same option. This constraint is illustrated in Figure 7. 

 

Figure 7. Pheromone repetition for Nest 1 and Nest 2 

3.3 Ant Parameters 

In this problem, the goal is to use the smallest possible ant population to attain the best possible solution. 
Through trial and error, the ant parameters chosen for both the basic ACO approach and MACA were an 
initial ant population of 75 ants per nest, an evaporation rate (𝜌) of 0.4, a reward factor (R) of 5, and an 𝛼 

and 𝛽 values of 1.6 and 1.0, respectively. As for the number of iterations, both algorithms were left to run 
until they reached the global optimum solution. The respective number of iterations used by each algorithm 
was recorded to compare the performance. The heuristic information for both algorithms was taken as the 
inverse of the total distance between the tower crane and supply facilities.  

It should be noted that the number of ants per nest in MACA varies from one iteration to another based on 
the performance of the ants in each nest. The lead ant supervises the performance of ants in all nests. 
Based on the performance of ants in each location, the lead ants decide on the number of ants to be 
allocated in each nest. The nest whose ants achieve better values compared to the ants in other nests gets 
more ants in the next iteration. This is the key concept in MACA, which aims at the efficient utilization of the 
available limited resources (ants) to get the best possible results. This is accomplished by redistributing the 
resources among search points relative to their potential to lead to the global optimal solution rather than 
using a uniform distribution of population as in traditional ACO.  

4 RESULTS 

Both ACO and MACA were developed using VBA. The codes were 
executed on a machine with a 3.40GHz processor and 4 MB of ram. 
The ACO algorithm and MACA metaheuristic reached the best 
solution of $504.76 at nest 8 (tower crane location 8) in an average 
time of 10 runs of 1.335 and 0.891 seconds, respectively, using the 
abovementioned parameters, see Figure 8. The results summary of 
the runs is shown in Table 1. MACA proved to be a superior 
alternative approach to traditional ACO for this problem as it took less 
total number of ants, iterations, and time to reach the optimal 
solution. 

5 CONCLUSIONS 

This paper presented the tower crane allocation problem as well as 
the previous ACO model that was developed by the authors to model 
it. The paper discusses the limitations of the previous model, and 
introduces a new modified version of the traditional ant colony optimization algorithm that was developed 
to account for the previous model limitations. A case study from the literature was used for the application 
of both generic ACO and modified approach. Results show a significant advantage in terms of time when 

Figure 8. Time difference between 
ACO and MACA 
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utilizing MACA as opposed to traditional ACO to solve this allocation problem. Furthermore, results show a 
promising potential for MACA to be used for other complex optimization problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 FUTURE WORK 

Future research on this approach would be its application to other complex optimization problems and 
actual construction projects. 
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1 900 0.531 504.763 
1 900 0.328 504.763 
2 1802 0.609 504.763 
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