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Abstract: Transportation infrastructure systems are pillars for society development and growth. The 
challenge of fund limitation, aging, and deteriorating infrastructure, and higher loading demand increase 
the mandate for implementing effective asset management to manage transportation infrastructure assets 
cost effectively at acceptable levels of service. Pavement and Bridge Management Systems have existed 
for several years. However, these systems are often operated separately. Agencies are faced with the 
challenge of fund allocation and the trade-off between assets. Therefore, there is a need for a decision 
support system that cost-effectively optimizes the trade-off between systems’ components; for example, 
allocating funds for bridge rehabilitation or pavement rehabilitation while deferring the other. On the other 
hand, there is a unique advantage in cross-asset optimization in that cost saving can be generated through 
bundling of asset components by location for maintenance and rehabilitation. In essence, cross-asset 
management provides opportunities to reduce procurement cost, user delay, and interruption.  This paper 
presents a cross-asset management methodology using hazard and survival model. A case study is 
presented to demonstrate the proposed methodology. 

1 Introduction 

Asset Management in basic terms is a systematic business process that employs strategic, engineering 
and economical means to provide a holistic approach to managing infrastructure assets to meet specified 
performance measures’ level of services. There are many definitions of Asset Management in the literature; 
however, a widely used definition is the one proposed by the Federal Highway Administration (FHWA) US 
Department of Transportation (FHWA 1999) also adopted by Transportation Association Canada (TAC) 
(TAC 2013) “Asset management is a systematic process of maintaining, upgrading and operating physical 
assets cost-effectively. It combines sound business practices and economic theory, and it provides tools to 
facilitate a more organized logical approach to decision making. Thus, asset management provides a 
framework for handling both short- and long-range planning.” Asset management can be viewed as a 
strategic system into which all network management systems feed to (TAC 2013). A widely used asset 
management framework is illustrated in TAC pavement design and management guide (Figure 1) (TAC 
2013).  
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Figure 1: Overview framework for asset management 

Although there is a common framework for asset management, transportation agencies have traditionally 
made investment decisions for individual assets separately. Independent management systems have 
indeed traditionally been developed to manage pavements and bridges, the two main transportation assets. 
Therefore, Pavement Management Systems (PMSs) and Bridge Management Systems (BMSs) are often 
operated separately. This lack of integration between management systems may be due to restrictions 
associated with funding and/or limitations to the agency’s ability to compare data objectively across asset 
types (Proctor and Zimmerman 2015). Deciding how best to allocate limited resources across these various 
asset classes to provide acceptable performance poses a persistent and difficult challenge for agencies. 

A recent report published by AASHTO (Proctor and Zimmerman 2015) identified three levels of cross-asset 
management that differ in their complexity and quantified sophistication: cross-asset trade-offs, cross-asset 
allocation, and cross-asset optimization. Cross-asset trade-offs represent the simplest and most common 
of the three concepts. Under this approach, resources are transferred between asset classes in order to 
maximize perceived utility (Proctor and Zimmerman 2015). In this definition is important to highlight that 
utility is perceived and not measured nor quantified. This means that although cross-asset trade-offs can 
be data-driven, it is somewhat informal and dependent upon the judgment of a few individuals (Proctor and 
Zimmerman 2015). Cross-asset allocation is the next most sophisticated decision process, as it relies on a 
simultaneous quantification of benefits of asset classes (Proctor and Zimmerman 2015). Under this 
approach, all the investment candidates in the different asset classes will be assessed and ranked using a 
common benefit indicator. Some of the indicators that could be used in this evaluation are benefit/cost ratio, 
multi-criteria decision analysis and risk/reward-based allocation (Proctor and Zimmerman 2015). Finally, 
cross-asset optimization represents a further refinement of cross-asset allocation. By using recursive 
mathematical computations, cross-asset optimization determines the maximum utility for a given set of 
investments constrained by a set of performance parameters (Proctor and Zimmerman 2015). 

Previous studies have attempted to analyze different approaches for optimal cross-asset allocation. Fwa 
and Farhan (2012) proposed a two-stage optimization process. In the first stage, an individual asset system 
optimization was performed searching minimal maintenance cost for each asset class. The set of solutions 
obtained for each asset class will then be considered in a second optimization stage dealing with the cross-
asset allocation. The objective of the second optimization stage is to achieve an equitable allocation of the 
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budget by maintaining equivalent amounts of performance improvements between asset classes. In this 
two-stages optimization, Fwa and Farhan (2012) considered different performance indexes for each asset 
class (e.g. PCI for pavements and BHI for bridges) and searched for an equitable allocation of the budget 
by minimizing the gap between each asset class condition and their threshold performance. Dehghani et 
al. (2013) proposed a cross-asset resource allocation framework that considers functional, structural and 
environmental performance indicators to estimate the optimal budget to invest in each asset. When applying 
this framework, Dehghani et al. (2013) found that the weights assigned to each indicator changed the 
optimal resource allocation. Wang and Chou (2015) proposed an optimization model considering integer 
and constraint programming aimed to optimize project scheduling by coordinating projects among different 
assets. In this application, the objective was to maximize the total benefits of the projects, assessed in 
terms of the asset condition and the vehicle operating cost. In order to integrate different assets in this 
optimization process, Wang and Chou (2015) considered a common condition index based on a five-point 
scale, named asset condition index (ACI) for all the asset classes. The main limitation of implementing this 
approach is that transportation agencies are currently using different and independent performance indexes 
for each asset class. 

1.1 Problem Statement 

The studies presented thus far provide evidence that one of the key aspects of cross-asset management 
is how to assess the performance of different asset classes using a common indicator. Different assets 
often have independent sets of performance measures so there is a need to adopt a common performance 
measure to capture the effect of each project’s implementation in the cross-asset optimization process.  

1.2 Scope and Objective 

In order to cover this gap, this paper proposes a framework for cross-asset management of transportation 
systems using hazard models. By using hazard models, the proposed framework allows incorporating the 
risk of performance failure due to aging infrastructure and lack of maintenance or rehabilitation. 

The objective of this research is to develop a framework for the cross-asset management of transportation 
systems based on hazard models. The present study extends the traditional cross-asset management 
framework by applying a common methodology (hazard/survival models) to predict assets service life. The 
proposed framework will help infrastructure managers in the allocation of resources across different assets 
and document investment trade-offs between asset classes. By using the proposed tool, transportation 
agencies will be able to demonstrate how priorities and performance objectives drive decision-making. 

2 Proposed Framework 

The proposed framework for cross-asset optimization consists of three modules (Figure 2): performance 
models, hazard/survival models, and priority programming. The first module corresponds to traditional 
deterioration models performed by independent management systems. These models describe the 
deterioration of each asset class using different performance indexes. In order to have a common indicator 
of all asset classes, the proposed framework develop hazard/survival models for each asset class. The 
survival functions obtained from this module allow to perform cross-asset optimization using a common 
indicator for all asset classes. Each of these modules are described in detail in the sections below. 
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Figure 2: Proposed framework for cross-asset management 

 

2.1 Performance Models 

Performance modeling is used to predict performance and deterioration of assets as a function of time, and 
therefore, predict the service life of assets. Asset performance is assessed in terms of an indicator that 
evaluates the degree to which the infrastructure serves its users and fulfills the purpose for which it was 
built or acquired (Uddin et al. 2013). Various types of distress, such as roughness, rutting, etc., or indexes 
based on combinations of such distresses such as Bridge Health Index (BHI), Pavement Condition Index 
(PCI), etc. can be used as performance indicators for these models (FHWA 2002). 

Performance models are a key element for the development of multi-year maintenance programs, as they 
allow to understand the current condition of the complete network but also to understand how asset 
condition will change over time (TAC 2013). Figure 3 illustrates how performance modeling is used to 
predict future deterioration of pavement, expected improvements due to the application of maintenance or 
rehabilitation activity and determining the “need year” of application. 

 

Figure 3: Deterioration Modeling and Impact of Maintenance Activities (FHWA 2002) 
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Asset deterioration process is affected by many factors such as environment, loading, and material. 
Therefore, to construct accurate deterioration models for maintenance and rehabilitation activities, 
homogeneous sections should be identified (Alyami and Tighe 2013). For each asset category, 
homogenous families are grouped and deterioration models are developed as an input to constructing 
survival models.  

2.2 Hazard/Survival Models 

Survival analysis and hazard-based duration models are methods that can estimate the probability of 
survival and failure of a specific asset in certain age. Some previous studies have used these models to 
analyze asset deterioration and failure (Nakat and Madanat 2008; Gao et al. 2012; Anastasopoulos and 
Mannering 2015; Chen et al. 2015). 

The first step of hazard-based duration model is to develop the cumulative density function (CDF), 

[1]  𝐹(𝑡) = 𝑃(𝑇 < 𝑡) 

where P is probability, T is time, and t is some specified time. The probability density function of this CDF 
is, 

[2] 𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 

Hazard-based duration models could estimate the conditional probability of the asset service life ending at 
time t (it is assumed that the service life was not ended until time t). The probability of failure is significantly 
important because if this probability increases, the asset service life would also increase (Anastasopoulos 
and Mannering 2015). The hazard function can be written as, 

[3] ℎ(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
 

where f(t) and F(t) are the probability density function and cumulative probability distribution function, 
respectively. Hazard function presents the probability in which the asset service life ends at time t, if it was 
not ended before time t. Based on this conditional probability function, the 𝐻(𝑡) could be estimated. 𝐻(𝑡) is 
the cumulative hazard function and provides the summation of probabilities at which events are ending up 
to or before time t. This integrated function can be written as, 

[4] 𝐻(𝑡) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0
 

Survival functions presents the probability of an asset will survive beyond a specified time. This function 
could be formulated as, 

[5] 𝑆(𝑡) = 𝐸𝑋𝑃(−𝐻(𝑡)) 

The most common parametric hazard-based duration methods involve Exponential, Weibull, and log logistic 
models. Weibull models were used for this study, which can be expressed as, 

[6] ℎ(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1 

where 𝜆 > 0 is scale parameter and 𝑝 > 0   is shape parameter. 𝐻(𝑡) and 𝑆(𝑡) for Weibull distribution can 
be written as, 

[7]  𝐻(𝑡) = (𝜆𝑡)𝑝 

[8] 𝑆(𝑡) = 𝐸𝑋𝑃(−(𝜆𝑡)𝑝) 

Developed survival models for each asset presents the probability of that asset to survive beyond a specific 
time. This means that there is an opportunity to estimate the survival rate in each year and choose the 
assets with the lowest probability of survival for the trade-off between major maintenance or rehabilitation 
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among different assets. This approach also aims to group various assets which are locating in same or 
closer sections. In other words, using the survival probabilities, assets can be moved or delayed to be 
grouped with another within the same section in order to reduce the number of lane closures and service 
interruptions during multiple years, potentially reduce the procurement and overall costs, and improve the 
overall network condition.  

2.3 Priority Programming 

The optimal design of maintenance programs is not straightforward. Indeed, it presents STxN possible 
solutions in a network with N assets, S possible maintenance treatments over a planning horizon of T years 
(Golroo and Tighe 2012; Yepes et al. 2016). Selection of maintenance and rehabilitation alternatives can 
be based on engineering judgment, local experience or agencies policies (TAC 2013). In transportation 
management systems, priority programing involves four steps: integrating information, identification of 
needs, priority analysis, and output reports (Alyami 2012). Various priority programming methods are 
established ranging from simple to more complex mathematical programming (Haas et al. 1994). 

In broad terms, techniques used in asset management for priority programming can be classified in three 
groups (Torres-Machi et al. 2014): selection based on ranking, mathematical optimization methods and 
near optimization methods. Selection based on ranking is performed by enlisting and rating alternatives 
based on an indicator. This indicator can be based on judgment, pavement condition or economic analysis. 
This method is easy to understand but it can only be used when the number of alternatives is limited 
(Zimmerman 1995; Meneses and Ferreira 2013). 

Mathematical optimization methods select alternatives maximizing or minimizing an objective function while 
satisfying some constraints. Objective functions commonly considered are: maintenance costs, vehicle 
operating costs and effectiveness, among others. Mathematical programming methods commonly used for 
infrastructure asset management are: linear, nonlinear, integer and dynamic programming. Compared to 
ranking, mathematical optimization methods present the advantage of providing optimal solutions. 
However, they are not suited to deal with large networks because the complexity of the problem increases, 
requiring long computing time (Torres-Machi et al. 2014). 

Near optimization methods, also called heuristic methods, give solutions that are close approximations to 
those derived from mathematical optimization. Heuristic methods, whose development is linked to the 
evolution of artificial intelligence procedures, include a large number of search algorithms based on 
iterations in which the objective function is evaluated and the constraints are checked (Yepes et al. 2016). 
Previous studies have reported that heuristic methods lead to simpler and more computationally efficient 
solutions than mathematical methods (Ferreira et al. 2002). 

The selection of the most appropriate method for priority programming depends on the characteristics of 
the problem. Whereas simple methods such as priority based on ranking can be used when the number of 
alternatives under evaluation is low, more sophisticated methods such as heuristic methods may be 
recommended for higher asset networks. 

3 Case Study 

An illustrative application of the proposed framework for the cross-asset management of transportation 
infrastructures is presented in this section. The case study consists of an infrastructure transportation 
system which was part of an asset management challenge posted at the 7th International Conference on 
Managing Pavements (Haas 2008; Saad 2014). The network of assets is composed of pavements, bridges, 
and culverts. 

The pavement network is comprised a total of 1,293 road sections with a total length of 3,240 km. Two 
types of road sections were considered: interurban and rural. The former is represented on the medium to 
very highly trafficked roads, while the latter spans most traffic and condition categories. The information 
given on each road section includes: length, width, Annual Average Daily Traffic (AADT), year of 
construction, and surface condition (International Roughness Index, IRI; Pavement Quality Index, PQI; 
Surface Distress Index, SDI; etc.) Other general information was also given, regarding the annual rate or 
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IRI increase; the maximum allowed IRI value; and the unit cost of pavement maintenance and rehabilitation 
treatments. 

The bridge component is comprised 161 bridges. Two types of major structures were considered in this 
analysis: concrete and steel. The information given on each bridge includes: length, number of spans, 
maximum span length, span type, clear roadway width, skew angle, usage, first year in service, and load 
capacity. Information regarding condition is also included in terms of a condition rating, sufficiency rating, 
and replacement cost. 

The culvert component of the transportation system is comprised 356 culverts. Information provided for 
each culvert includes: maximum diameter, span type, clear roadway width, skew angle, and first year in 
service. Similarly, the replacement cost, condition rating, and sufficiency rating for each culvert is provided. 

As indicated, for each asset category, homogenous families are grouped and deterioration models are 
developed as an input to constructing survival models following the steps indicated in section 2.2. For 
example, homogeneous road sections were classified in four categories of traffic level: rural low traffic, rural 
medium traffic, interurban high traffic, and interurban very high traffic. Table 1 summarizes the information 
considered for the development of hazard models and survival functions for each asset class. Table 2 
shows the parameters of the survival functions obtained for each asset. Figure 4 shows an example of the 
survival function obtained for steel major bridges. 

Table 1: Information considered for the development of hazard/survival models 

Asset class Trigger level 

Pavement 

Rural  
low traffic (AADT < 1,500) IRI ≥ 2.8 mm/m 
high traffic (AADT > 1,500) IRI ≥ 2.3 mm/m 

Interurban  
 

low traffic (AADT < 8,000) IRI ≥ 2.2 mm/m 
high traffic (AADT > 8,000) IRI ≥ 1.9 mm/m 

Bridge 
Concrete  Condition rate < 70 

Steel  Condition rate < 60 

Culvert N/A  Condition rate < 70 

Table 2: Parameters of the survival functions for each asset class 

Asset class λ p 

Road 

Rural  
Low traffic (RRLT) 0.133 5.632 

High traffic (RRMT) 0.142 5.357 

Interurban  
Low traffic (RIHT) 0.084 1.634 

High traffic (RIVHT) 0.115 6.105 

Bridge 
Concrete (BC)  0.023 9.865 

Steel (BS)  0.024 5.642 

Culvert Culvert (C)  0.021 4.295 
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Figure 4: Survival function obtained for steel major bridges 

In order to analyze the capabilities of the proposed framework, an example of cross-asset priority 
programming is shown in Figure 5. The use of the proposed survival functions allows to compare the need 
of maintenance both within asset class and between asset classes. Because S(t) accounts for the 
probability of survival, assets with  lower value of S(t) have a higher need or priority. Therefore, from the 
example shown in Figure 5, it could be observed that within road assets, road 177B presents higher risk of 
failure and therefore higher need of maintenance than road 75A. Similarly, an analysis of maintenance 
need between asset classes can be performed based on S(t). In this case, when comparing the 
maintenance need of bridge B159, road 6A and culvert C7, the proposed framework allows to determine 
that the highest priority should be given to road 6A, followed by culvert C7 and bridge B159. 

 

Figure 5: Cross-asset priority programming 
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From the illustrative case study shown above it can be concluded that the proposed framework allows to 
perform cross-asset priority programming using a common indicator for all the asset classes. Further work 
is required to investigate the implementation of optimization techniques for the priority programming. 

4 Conclusions 

This paper presents a framework for cross-asset management of transportation infrastructure systems 
based on hazard/survival models. For illustrative purposes, the proposed framework was applied to a case 
study consisting of an infrastructure transportation system which included pavements, bridges, and 
culverts. From this application it can be concluded that: 

• The proposed framework allows to compare the maintenance and rehabilitation needs of different 
asset classes using a common indicator based on survival functions. The proposed model indicates 
the probability of survival of a given asset, at any given year, to meet the required level of service.   

• By using hazard models, the proposed framework allows incorporating the risk of structural 
performance failure due to aging infrastructure and lack of maintenance or rehabilitation impact on 
the network. This concept aligns with agencies’ direction towards risk-based asset management, 
such as MAP-21 requirements.    

• The proposed model allows for investment trade-off analysis between assets, taken into account 
the system risk of failure and survival to meet the required level of service.  

 
Although the proposed work is demonstrated through the case study, future work include: 

• A comparison of the proposed model results to other models proposed in the literature. 

• A sensitivity analysis to determine the need of a weighting system between asset types and the 
improvement achieve among asset groups. 

• An exploration of different optimization techniques for cross-asset budget allocation that will 
enhance the solutions provided by ranking. 
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