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Abstract: The construction risk assessment and management process often involves heterogeneous group 
of experts with various levels of expertise who must collectively make decisions and reach a common 
solution. However, real-life decision making involves a great deal of uncertainty and subjectivity. To address 
these challenges, this paper explores the application of fuzzy logic in contexts involving multi-criteria group 
decision making (MCGDM) problems. The approach discussed in this paper describes the sub-processes 
necessary for aggregating the opinions of a heterogeneous group of experts in order to achieve one unique, 
representative problem solution. An extensive review of existing literature was conducted to explore a 
variety of construction risk assessment expertise criteria, and finally a comprehensive list of criteria for 
assessing experts’ expertise levels was compiled in order to assign experts’ importance weights. In the 
course of this study, a comparative analysis of methods for assigning weights to experts was developed 
and a new weight assigning model using fuzzy analytical hierarchy processes (FAHP) was proposed. In 
order to assist researchers and practitioners investigating construction risk MCGDM problems in 
heterogeneous settings, this paper main contributions are: (1) eliminating the need of a moderator during 
the aggregation process; (2) presenting a clear and consistent set of criteria that can be used to rate experts’ 
levels of expertise in risk management; and (3) proposing an innovative expertise weight assigning method 
(i.e. FAHP) in risk management. In the future, this research will be extended by integrating the weight 
assigning model outlined in this study into the fuzzy aggregation process. 

1 INTRODUCTION 

Whenever there is little knowledge or high uncertainty surrounding an area being investigated, such as 
evaluating and managing risks on construction projects, researchers must rely on the input of experts 
(Baker et al. 2006). Groups involved in MCGDM can be classified as either homogenous or heterogeneous; 
this classification is based on each individual’s degree of importance, or rather, their expertise in the context 
of the problem being evaluated. If the opinions of all experts are considered to be equally important, the 
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group is considered homogenous; otherwise, it is identified as a heterogeneous group (Herrera-Viedma et 
al. 2014).  

In construction risk assessment and management, groups of experts with different levels of expertise are 
involved at various stages of the project lifecycle to make decisions and reach a common solution. 
Structured aggregation methods are instrumental in risk management processes in order to aggregate 
individual opinions and achieve a collective assessment. The aggregation of experts’ opinions in the 
construction risk assessment group decision-making process can be employed for applications such as risk 
and response strategy identification and prioritization, assessment of the probability of occurrence and 
impact of risk and opportunity events, and selection of the best risk contingency response strategies. 

The standard metric used in the literature to differentiate heterogeneous experts assigns importance 
weights to experts based on their qualification attributes relative to the subject being discussed. Therefore, 
in the construction risk field, importance weights can be used to determine each expert’s level of influence 
on the final decision being made (Perez et al. 2011). In other words, in construction risk MCGDM problems, 
the aggregation of the opinions of a heterogeneous group of experts involves assigning an importance 
weight to each expert involved in the decision-making process in order to combine all the experts’ opinions 
into one unique, representative value. In most approaches for aggregating the opinion of a heterogeneous 
group of experts, weights are commonly assigned to the experts by the moderator. Moreover, such 
approaches often do not employ a method for assigning weights that is based on experts’ qualification 
attributes (Herrera-Viedma et al. 2014). Therefore, there is a lack of clear and structured methods to assign 
importance weights to experts’ opinions based on specific field assessment criteria. The objectives of this 
paper are as follows: (1) addressing the subjectivity and possible biases involved in the assignment of 
importance weights to experts by eliminating the moderator figure; (2) presenting a clear and consistent list 
of criteria to assess expert’s levels of risk management expertise; (3) and conducting a detailed and 
extensive review of previous weight assigning models to justify the need for an innovative, clear, and 
structured weight assigning model (i.e. FAHP) in construction engineering. 

The first section of this paper discusses previous research on the qualification attributes of construction risk 
experts; this section also analyzes existing methods in the literature for assigning weights to experts’ 
opinions. In the second section, research gaps are addressed by proposing an innovative weight assigning 
method based on a clear and consistent set of criteria that can be used to rate the levels of expertise of 
group members participating in MCGDM problems. Finally, conclusions are drawn and future research 
directions are recommended. 

2 BACKGROUND 

2.1 Literature review of qualification criteria to assess experts’ levels of expertise 

Even though there is limited consensus regarding the definition of an expert, an individual’s expertise should 
not be evaluated based on whom each person is; instead, expertise should be evaluated on the basis of 
qualification attributes that each individual possesses (Baker et al. 2006). Thus, it is essential to create a 
list of attributes (i.e., assessment criteria) to evaluate and calculate each expert’s level of expertise. 

Existing definitions in the literature related to the classification of expert judgement take into consideration 
the following attributes: knowledge, experience, ability to influence policy, educational background, 
professional reputation, status among his/her peers, years of professional experience, own self-appraisal 
of relative competency in different areas, and where appropriate, publication record (Hoffmann et al. 2007). 
All these characteristics form criteria that endorse an expert’s relevance and credibility in their own field of 
expertise. However, most qualification attributes used to assess an expert’s levels of expertise are 
qualitative in nature. In order to ensure less subjectivity in assessing expertise in a specific field, there is a 
need for greater transparency in the criteria used for classifying experts (Cornelissen et al. 2003). 

In construction risk assessment, the levels of expertise possessed by experts involved in the decision-
making process substantially influences the decisions being made (Wan and Yuan 2011). However, in the 
literature, there is no definite list of qualification attributes that can be used to classify the decision maker’s 
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risk assessment expertise (Wan and Yuan 2011). Therefore, this paper proposes a comprehensive list of 
criteria to assess experts’ levels of expertise in risk assessment MCGDM problems (Section 3.1).  

2.2 Comparative analysis of previous methods for assigning weights to heterogeneous groups of 
experts 

According to previous research, importance weights can be assigned to experts in several different ways: 
(1) a moderator or manager subjectively assigns weights directly to the experts (Herrera-Viedma et al. 
2014); (2) the weights are determined by comparing the consistency of the experts in stating their 
preferences (Herrera-Viedma et al. 2014); (3) a fuzzy expert system (FES) is adopted to determine the 
weights, based on essential qualification attributes (Elbarkouky et al. 2014); (4) a multi-attribute utility 
function (MAUF) is used to determine a weight for each expert, based on the expert utility values and 
relative weight of experience measures (Awad and Fayek 2012a); and (5) the analytical hierarchy process 
(AHP) is used to derive weights by considering the set of attributes related to decision makers’ levels of 
expertise (Omar and Fayek 2016). 

The first method relies on a moderator to assign importance weights to experts; although it is a fast and 
easy method, it is highly subjective and is prone to human error and bias. In the second method, weights 
are determined based on the consistency of any given expert in providing information, with more weight 
being assigned to the most consistent experts. This method is only limited to the consensus-reaching 
process and requires several rounds of discussion and more computational efforts (Herrera-Viedma et al. 
2014). Furthermore, during the consensus-reaching process, a discordant expert may feel obliged to 
change his/her preferences significantly to attain the required level of agreement among all participants. 
Therefore, these two methods have limitations that do not make them suitable to assign importance weights 
to experts in construction risk assessment MCGDM problems.  

The method of developing a fuzzy expert system (FES) to determine the importance weight factor for each 
expert has advantages and disadvantages. The main advantage of the FES model is that it is easy access 
to knowledge, since natural language terms can be used as descriptors for the input and output variables 
of the system. However, the first and most impactful disadvantage is that in any fuzzy expert system, the 
number of rules generated in the model exponentially increases according to the number of inputs; as a 
result, it is very difficult to establish rules when dealing with complex problems. Moreover, one of the main 
challenges of using FES, as stated in the literature, is the process of constructing membership functions, 
which leads to longer computational times (ElBarkouky and Fayek 2010b). Furthermore, the FES is a 
context-oriented system (Awad and Fayek 2012c). There is a need for a specific methodology for 
systematic tuning of the FES knowledge base in order to increase the accuracy of the system (Awad and 
Fayek 2012b). For these reasons, the use of FES is also considered inappropriate for assigning weights of 
importance to experts’ opinions in construction risk MCGDM. 

The method of multi-attribute utility functions (MAUF) has the benefit of being effective in resolving MCGDM 
problems when decision makers need to consider their preferences regarding multiple criteria for making 
the final decision (Awad and Fayek 2012b). However, the MAUF method involves developing utility 
functions for each input criteria in the model, and thus it can only effectively assess models with a limited 
number of input criteria. In addition, the MAUF has been previously applied as a step in the consensus-
reaching process, and the same obstacles that occur during consensus reaching also hinder the use of the 
MAUF as a weight assigning model for construction risk assessment. 

The classical AHP approach provides a logical and comprehensive framework for structuring MCGDM 
problems in the following areas: representing and quantifying elements, relating overall goals to elements, 
and evaluating alternative solutions to the problem (Zhang 2010). AHP is a structured, yet flexible approach 
based on a powerful methodology that can be integrated with almost any group decision-support system 
(Dyer and Forman 1992). Previous applications of AHP include selecting the best alternative problem 
solution, ranking alternative solutions, and determining the merit of the members of a set of alternatives 
(i.e., prioritization) (Zhang 2010). Considering the literature (Medsker et al. 1995, Yang 1995, Lee et al. 
2001) on expert knowledge acquisition methods, such as the Delĥi method, consensus decision making, 
and brainstorming sessions, the AHP presents a straightforward format for information elicitation that is 
capable of using focus group sessions to obtain the pairwise comparison matrices. The classical AHP 
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approach has also been used for assigning weights to experts in MCGDM problems as a part of an AHP 
model, or in a subsidiary AHP model constructed for assessing experts’ levels of expertise (Dyer and 
Forman 1992, Saaty 1980). However, one of the main limitations of the classical AHP model is its inability 
to resolve the uncertainty and imprecision associated with mapping experts’ opinions onto crisp numbers 
(Li and Zou 2011). In order to simulate actual human judgment in FAHP, Buckley (1985) extended Saaty’s 
(1980) importance rating scale so that experts can use fuzzy numbers as ratios in the pairwise comparison 
matrices in place of classical AHP crisp ratios (Li and Zou 2011); as a result, the fuzzy pairwise comparison 
matrices were developed to address the vague and uncertain value of human opinion (Li and Zou 2011). 
Since construction risk assessment and management usually involves significant uncertainty and 
subjectivity, this paper proposes the use of the FAHP method (Section 3.2) to better capture experts’ 
opinions. 

3 A PROCESS FOR ASSIGNING IMPORTANCE WEIGHTS TO HETEOGENEOUS GROUPS OF 

EXPERTS IN CONSTRUCTION RISK ASSESSMENT MCDGM PROBLEMS 

3.1 A clear and consistent set of criteria for assessing experts’ levels of expertise in construction 
risk assessment 

In this research, a preliminary list of criteria to assess experts’ levels of expertise in risk assessment was 
developed, based on a review of previous literature (Figure 1). The assessment criteria are organized into 
seven “criteria” categories that each contains three to seven sub-criteria attributes. Quantitative criteria are 
measured using numerical scales, while qualitative criteria are measured using predetermined rating 
scales. For brevity, only a few of the criteria depicted in Figure 1 are discussed. For example, the 
“experience” quantitative criterion, which is used to assess level of expertise, comprises the following five 
sub-criteria: (1) “total years of experience” (i.e., the number of years the expert has been working in his/her 
discipline); (2) “diversity of experience” ( i.e., the number of different companies the expert worked for); (3) 
“relevant experience” (i.e., the number of years the expert has been working in risk management); (4) 
“applied experience” (i.e., the number of projects in which the expert performed risk management tasks); 
and (5) “supervisory experience” (i.e., the number of employees supervised by the expert). All quantitative 
sub-criteria in Figure 1 are measured using numerical scales. 

An example of a qualitative criterion among the list provided in Figure 1 is “reputation”. The “reputation” 
criterion includes the following five sub-criteria: (1) “social acclamation” (i.e., the a number of participants 
that indicate one specific participant expert as being the most relevant expert in risk management); (2) 
“willingness to participate in the survey” (i.e., the quality of responses provided by a participating expert); 
(3) “professional reputation” (i.e., the expert’s level of credibility, based on consistency and reasonableness 
(i.e., use of engineering judgement) in previous decisions); (4) “enthusiasm and willingness” (i.e., the 
expert’s level of enthusiasm and willingness in performing risk management tasks in his/her current 
company); and (5) “level of risk conservativeness”, (i.e., an expert’s tendency to be conservative in their 
risk assessment practices). All qualitative sub-criteria in Figure 1 are measured using the predetermined 
rating scale shown in Table 1. The Likert scale includes an odd number of values in order to allow decision 
makers to select a neutral rating (Hartley 2014, Johnson and Morgan 2016). 

Table 1: Predetermined rating scale for experts’ “reputation” 

Predetermined Rating Scale Description of References Variables of Predetermined Rating Scale 

1 Very poor consistency and very poor reasonableness of previous decisions 

2 Poor consistency and poor reasonableness of previous decisions 

3 Average consistency and average reasonableness of previous decisions 

4 Good consistency and good reasonableness of previous decisions 

5 Very good consistency and very good reasonableness of previous decisions 
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Assign weights to experts 

according to the criteria most 

suitable to evaluate expertise

1. Experience

2. Knowledge

3. Professional 

performance

4. Risk Management 

Practice

5. Project Specifics

6. Reputation

7. Personal Attributes 

and Skills

1.1 Total Years of Experience

1.2 Diversity of Experience

1.3 Relevant Experience

1.4 Applied Experience

1.5 Supervisory Experience

2.1 Academic Knowledge

2.2 Education Level

2.3 Awards

3.1 Current Occupation in the Company

3.2 Years in Current Occupation

3.3 Years since PEng Certification

3.4 Previous Key Employee Commitment

3.5 Current Key Employee Commitment

3.6 Expertise Self-Evaluation

3.7 Level of Construction Training

4.1 Average Hours of Work  in Risk per Week

4.2 Level of Risk Management Training

4.3 Risk Management Conferences Experience

4.4 Risk Identification and Planning

4.5 Risk Monitoring and Control

4.6 Crisis Management

5.1 Project Size Limit

5.2 Commitment to Time Deadlines

5.3 Commitment to Cost Budget

5.4 Safety Adherence

5.5 Geographic Diversity Experience

6.1 Social Acclamation

6.2 Willingness to Participate in Survey

6.3 Professional Reputation

6.4 Enthusiasm and Willingness

6.5 Level of risk Conservativeness

7.1 Level of Communication Skills

7.2 Level of Teamwork Skills

7.3 Commitment to Cost Budget

7.4 Level of Analytical Skills

7.5 Level of Ethics

Goal Criteria Sub-Criteria

 

Figure 1: List of criteria to assess experts' levels of expertise in construction risk assessment 
(decomposed into FAHP hierarchical structure) 

3.2 The proposed fuzzy AHP weight assigning method 

The method for assigning importance weights to experts’ opinions proposed in this research is the fuzzy 
analytical hierarchy process (FAHP) (Figure 2). One of the main advantages of FAHP is that it allows 
decision makers to represent their preferences with a reasonable interval, instead of crisp values. These 
intervals are represented as fuzzy numbers, which allows the FAHP model to better express the overlap of 
concepts or values being represented by the experts. Triangular fuzzy numbers (TFNs) are adopted in this 
research, as they are the most widely used form of fuzzy numbers and are easier to construct than other 
forms (Gohar et al. 2012). TFNs are defined by three real numbers expressed as (𝑙, 𝑚, 𝑢), where 𝑙 is the 
lower limit, 𝑚 is the most likely value, and 𝑢 is the upper limit (Srichetta and Thurachon 2012). 

TFNs are used in FAHP to form fuzzy judgment matrices, which correspond to the crisp value matrices in 
classical AHP. Table 2 represents one of the common fuzzy linguistic scales that are employed for the 
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pairwise comparisons in this research (Tian and Yan 2013, Chang 1996). According to Chang (1996), for 
the fuzzy comparison matrix to be consistent, the fuzzy numbers to the left and right of the matrix’s diagonal 
have to be reciprocal, just as in classical AHP. Chang (1996) uses the fuzzy inverse formula (Equation 1) 
to represent the reciprocal TFNs.  

[1] (𝑙, 𝑚, 𝑢) −1 = (1 𝑢⁄ , 1 𝑚⁄ , 1 𝑙⁄ ) 

Table 2: Linguistic scales for relative importance ratings (adapted from Demirel et al. 2008) 

Linguistic Scale for Relative 
Importance 

Triangular 
Fuzzy Scale 

Reciprocal of 
Triangular Fuzzy 

Scale 

Exactly the same (1,1,1) (1,1,1) 

Approximately the same importance (1/2,1,3/2) (2/3,1,2) 

Weakly more important  (1,3/2,2) (1/2,2/3,1) 

More important  (3/2,2,5/2) (2/5,1/2,2/3) 

Strongly more important  (2,5/2,3) (1/3,2/5,1/2) 

Absolutely more important (5/2,3,7/2) (2/7,1/3,2/5) 

 
The four main FAHP approaches are those developed by Van Laarhoven and Predrycz (1983), Buckley 
(1985), Chang (1996), and Cheng (1997). Among these approaches, Chang’s extent analysis method is 
the most popular, because it involves considerably simpler computational efforts than the other methods, 
and it has been successfully applied in many fields (Ding et al. 2008). In summary, Chang’s extent analysis 
approach is based on the degrees of possibility for each criterion in FAHP. After the crisp weights for the 
criteria are obtained, they are normalized to obtain final criteria weights (Zhang 2010). 

The FAHP weight assigning model proposed in this research involves two main processes: (1) developing 
the FAHP weight assigning model and (2) using the model (Figure 2). 

 

Figure 2: Proposed FAHP weight assigning model 

Developing The model Using the model

Collect each ‘Subcriteria’ data 

value from each expert  

Conduct Fuzzy AHP 

Calculations between selected 

‘Subcriteria’ data

Collect linguistic scale 

pairwise comparison data 

from experts 

Conduct Fuzzy AHP Calculations 

between selected ‘Criteria’ data

Start using the model

Obtain importance weights of ‘Subcriteria’

 in relation to each ‘Criteria’ cluster

Obtain importance weights of ‘Criteria’

 in relation to other ‘Criteria’

Obtain quantitative data range values

 and qualitative data predetermined scale values

Normalize ‘Subcriteria’ data 

values obtained

Obtain normalized data

Use final expert Score equation to 

apply ‘Criteria’ and ‘Sub-Criteria’ 

weights to normalized data

Final importance weights of 

experts obtained 

Step 1: Establishing hierarchical 

FAHP structures

Step 2: Creating fuzzy judgement 

matrix using pairwise comparisons 

(TFNs)

Step 3: Chang’s Defuzzification 

method and final weights

Step 4: Final ranking of criteria 

obtained

Fuzzy AHP Calculations Step by Step

Collect all experts’ scores and 

apply arithmetic averaging to 

get importance weights

Obtain final experts’ scores

Obtain final experts’ importance weights
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The basic procedure to develop the FAHP model (Figure 2) is as follows (Srichetta and Thurachon 2012): 

1. Decompose the MCGDM problem into a structured hierarchy, with the goal at the top and the criteria 
and sub-criteria below (Figure 1). 

2. Create fuzzy pairwise comparison matrices. In this step, the decision maker uses the fuzzy linguistic 
scale (Table 2) to assess the rating score for each pair of sub-criteria or criteria. Therefore, the fuzzy 
pairwise comparison matrix (Equation 2) is constructed where the element 𝑎̃𝑖𝑗 inside the matrix is 

interpreted as the degree of importance of the ith criterion over the jth criterion. 

[2] 𝐴̃ = [𝑎̃𝑖𝑗] = [

(1,1,1) 𝑎̃12 ⋯ 𝑎̃1𝑛

⋮ (1,1,1) ⋱ ⋮

1/𝑎̃𝑛1 1/𝑎̃𝑛2 ⋯ (1,1,1)
] 

Where 𝐴̃ represents the fuzzy pairwise comparison matrix of n criteria and each 𝑎̃𝑖𝑗 element represents 

a triangular fuzzy number. 

3. After the two FAHP pairwise comparisons have been completed for the two hierarchy levels (i.e., criteria 
and sub-criteria), Chang’s (1996) approach is used to determine the final weights for each criterion and 
cub-criterion listed in Figure 1. The step-by-step FAHP approach is as follows (Srichetta and Thurachon 
2012): 

a. Compute the value of the fuzzy synthetic extent 𝑆𝐼̃ with respect to the 𝑖𝑡ℎ criterion by 
applying the algebraic operations of summation and multiplication to the TFNs as follows 
(Equation 3): 

[3]                        𝑆̃ = [
𝑠̃1

⋮
𝑠̃𝑛

] = [

∑ 𝑎̃1𝑗
𝑛
𝑗=1 ⊗ (∑ 𝑎̃1𝑗

𝑛
𝑗=1 )

−1

⋮

∑ 𝑎̃𝑛𝑗
𝑛
𝑗=1 ⊗ (∑ 𝑎̃𝑛𝑗

𝑛
𝑗=1 )

−1
] =

[
 
 
 
 (∑ 𝑙1𝑗

𝑛
𝑗=1 , ∑ 𝑚1𝑗

𝑛
𝑗=1 , ∑ 𝑢1𝑗

𝑛
𝑗=1 ) ⊗ (

1

∑ ∑ 𝑢𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑚𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑙𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

)

⋮

(∑ 𝑙𝑛𝑗
𝑛
𝑗=1 , ∑ 𝑚𝑛𝑗

𝑛
𝑗=1 , ∑ 𝑢𝑛𝑗

𝑛
𝑗=1 ) ⊗ (

1

∑ ∑ 𝑢𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑚𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

,
1

∑ ∑ 𝑙𝑘𝑗
𝑛
𝑗=1

𝑛
𝑘=1

)
]
 
 
 
 

 

b. Then, based on the fuzzy synthetic extent values, the non-fuzzy values that represent the 
relative preference of one criterion over others must be calculated. Therefore, it is 
necessary to compute the degree of possibility in order to approximate the fuzzy priorities 
in the pairwise comparison matrices. In order to find the degree of possibility for 𝑠̃2 =
(𝑙2, 𝑚2, 𝑢2)  ≥  𝑠̃1 = (𝑙1, 𝑚1, 𝑢1), apply Equation 4 and Equation 5 as follows: 

[4]                       𝑉(𝑠̃1 ≥ 𝑠̃2) = {

1, 𝑖𝑓 𝑚2 ≥ 𝑚1

0, 𝑖𝑓 𝑙1 ≥ 𝑢2
𝑙1−𝑢2

(𝑚2−𝑢2)−(𝑚1−𝑙1)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The degree of possibility for a TFN 𝑆𝑖, to be greater than n TFNs 𝑆𝑘, can be given by the use of operation 
min proposed by Dubois and Prade (1980):  

[5] 𝑉 = [

𝑣1

⋮
𝑣𝑛

] = [
𝑚𝑖𝑛𝑉(𝑠̃1 ≥ 𝑠̃𝑘)

⋮
𝑚𝑖𝑛𝑉(𝑠̃𝑛 ≥ 𝑠̃𝑘)

] 

Where, k ∈ {1,2, … , 𝑛} and k ≠ I and n is the number of criteria being described previously. Each [𝑉1, 𝑉2, … 𝑉𝑛] 
value represents the relative non-fuzzy weight of one criterion over the others. However, these weights 
have to be normalized in order to be analogous to the classical AHP criteria weights. 
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c. Normalize the weight vector V to get the final non-fuzzy normalized weight vector W as 
follows (Eq. 6): 

[6]                      𝑊 = [

𝑤1

⋮
𝑤𝑛

] =

[
 
 
 
𝑣1

∑ 𝑣𝑖
𝑛
𝑖=1

⁄

⋮
𝑣𝑛

∑ 𝑣𝑖
𝑛
𝑖=1

⁄ ]
 
 
 

 

The weight values contained in the vector W are the final weights for each criterion (i.e. 𝐶𝑖) and sub-criterion 

(i.e. 𝑆𝑖  ) in the FAHP model, where the sum of 𝐶𝑖 and the sum of  𝑆𝑖 are both equal to 1. 

Once the values of 𝐶𝑖 and  𝑆𝑖 are obtained, the model can be used to determine the importance weight of 

each expert involved in the MCGDM problem using the following steps (Figure 1): 

1. Experts provide data input values for each sub-criterion being assessed.  

2. Apply a normalization process to ensure all input data ranges from [0–1], according to the 

maximum and minimum value of the data range for the quantitative sub-criterion obtained, 

and the qualitative predetermined scale data values.  

3. Apply the weights previously obtained for the criteria and sub-criteria (i.e.  𝐶𝑖 and 𝑆𝑖, 

respectively) to calculate each expert’s final (𝐸𝑆𝑗) score using Equation 7. 

[7] 𝐸𝑆𝑗 = ∑ [𝐶𝑖 ∗ (∑ 𝑆𝑘
𝑛𝑆
𝑘=1

𝑛𝐶
𝑖=1 ∗ 𝐼𝑘,𝑗)]  

Where 𝐶𝑖 represents the FAHP weight of the first (i=1) criterion, 𝑆𝑘represents the FAHP weight of the first 

(k=1) sub-criterion, and 𝐼𝑘,𝑗 represents the normalized data value input by the first (j=1) expert assessment. 

Also, 𝑛𝑐 and 𝑛𝑠 represent the number of criteria and sub-criteria, which are listed in Figure 1. Finally, after 
each individual expert score is calculated for the experts in the group, the final importance weight (IW) of 
each expert is calculated using Equation 8. The sum of all experts’ final importance weights should be equal 
to 1. 

[8]  𝐼𝑊𝑗 = 
𝐸𝑆𝑗

∑ 𝐸𝑆𝑗
𝑛
𝑗=1

⁄   

Where 𝐼𝑊𝑗 represents the final importance weight of the 𝑗th expert in the group and 𝑛 is the number of 

experts in the group. The final importance weight will be used later on in the aggregation process to 
differentiate the influence of each expert during construction risk assessment MCGDM problems. 

4 CONCLUSIONS AND FUTURE RESEARCH 

For construction risk assessment MCGDM problems, the process of aggregating the opinions of experts in 
a heterogeneous group involves the two sub-processes of assessing experts’ levels of expertise and 
assigning importance weights to experts. In the literature, importance weights are often assigned to experts 
arbitrarily and subjectively by the moderator. The main gaps in previous research are the lack of a clear 
and consistent set of criteria to assess experts’ levels of expertise, as well as the lack of a clear weight 
assigning method that is based on selected qualification attributes (i.e. knowledge, experience, reputation, 
performance, etc.) according to the field of study relevant to the problem (i.e. construction risk assessment). 
The main contribution of this paper is in addressing these gaps by proposing a FAHP weight assigning 
model based on a clear and consistent list of criteria for assessing experts’ levels of expertise in construction 
risk assessment. The FAHP weight assigning model provides a logical and comprehensive framework for 
structuring a MCGDM problem and quantifying its elements. Furthermore, this model addresses the 
subjectivity and uncertainty characteristic of the construction risk environment by allowing decision makers 
to represent pairwise comparison matrices using fuzzy linguistic scales. 

Future research will explore automation of the FAHP weight assigning model proposed in this paper and 
its integration with Fuzzy Contingency Determinator© (FCD), a software tool that uses a fuzzy arithmetic 
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procedure to determine construction project contingency (ElBarkouky et al. 2016). This research will 
facilitate the aggregation of the opinions of experts in a heterogeneous group when conducting risk 
assessment and contingency determination. In addition, an integrated aggregation framework that supports 
the FAHP weight assigning model and aggregation methods will be developed. Such a framework will help 
in comparing and selecting the most appropriate aggregation method to incorporate in risk assessment and 
management models.  
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