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Abstract: Large engineering companies have an abundance of project data in the form of reports and 
tables. As well, they possess valuable expert knowledge. There is enormous potential to systematically 
utilise these resources to assist with assessment of risks and estimates. Advances in computer and data 
sciences have significantly changed our interaction with data. More devices get connected the internet each 
day. “Sematic Web” has raised as a solution to increase machine readability and interoperability of data 
using “Linked Data” format and graph data structures. This provides a great environment to capture 
knowledge using ontology engineering. Overall, these concepts make it possible to create powerful and 
efficient knowledge bases. This paper presents our path and the latest efforts to create a knowledge 
management and representation system for engineering projects, using ontology engineering, linked data 
and semantic web concepts. 

1 INTRODUCTION 

Megaprojects are the primary mode of development across the engineering sectors of infrastructure, 

energy, and mining. Including other fields with similar delivery models such as defence, aerospace, and 

global events, it is estimated that 8%, or US$6 to $9 trillion dollars, of the global gross domestic product 

(GDP) is spent on megaprojects annually. The infrastructure sector is responsible for nearly half of that 

figure (Flyvbjerg 2014).  

These megaprojects constantly deal with risks and problems due to uncertainty and unforeseen conditions 

and events. Estimating contingencies for the capital expenditure (CapEx) are among the most important 

values to inform decision makers. These estimates rely heavily on previous data and engineering 

experience, and are produced through various engineering procedures. While engineering companies have 

an abundance of project data to back up these procedures and computational methods have advanced in 

the last few decades, cost overruns continue to occur despite the care taken to develop these estimates. 

Large cost overruns have been occurring in last 70 years across all domains around the world (Flyvbjerg 

et al. 2002). 

Cost is typically the most important decision criteria in project selection. That is particularly true for industrial 

projects with pure economic drivers where other causes of project failure, such as schedule overruns, are 

eventually translated into costs. For a typical megaproject with CapEx over one billion US dollars, the typical 

estimating contingency is 5% to 15% of the project’s total indicative cost (TIC).  

CapEx estimates overrun for a variety of reasons and mechanisms. Of 258 megaprojects across the world, 

the average cost overrun for roads and rail projects was 20% and 45%, respectively (Flyvbjerg et al. 2002). 

The mining industry does not perform much better, with average cost overruns estimated between 14% 
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(Bertisen and Davis 2008) and 22% (Gypton 2002) over the bankable feasibility estimate.  An investigation 

of over 300 industrial megaprojects ranging from US$1 to $20 billion (Merrow 2011) based on key failure 

criteria of cost, schedule, and production targets, reported up to 65% of the megaprojects failed to meet 

these key criteria with 40% cost overruns on average. Improving the contingency estimates will provide 

better financing, better project lifecycle management, and above all, help save private and public resources 

by identifying better investment opportunities, and strategies to shape projects before sanctioning.  

Many algorithms and methods have been proposed to improve CapEx contingencies, including multiple 

regression analysis (MRA) (Lowe et al. 2006) and influence diagrams (Diekemann et al. 1996). Recent 

research has incorporated artificial intelligence (AI) algorithms such as artificial neural networks (ANN) 

(Emsley et al. 2002), fuzzy expert systems (Abdelgawad and Fayek 2010), and case based reasoning 

(CBR) (An et al. 2007). None, however, have been broadly applied and accepted within the industry, 

primarily because of a lack of meaningful data. This is especially true since engineering megaprojects are 

complex systems with many different causal dependencies for which there is never enough data to establish 

meaningful correlations. The task of creating a reliable model for CapEx requires deep expert knowledge 

of causalities in addition to the data.  

To incorporate explicit expert knowledge, a family of AI algorithms called probabilistic graphical models 

(PGM) that allow for definition of explicit causalities have been tested. The idea has been effectively utilized 

by using Bayesian Belief Network (BBN) to deal with schedule contingency (Nasir et al. 2003). Later, BBNs 

were applied to cost contingency (Khodakarmi and Abdi 2014) as well. Given the effective application of 

the BBNs and the lack of meaningful data, researchers developed methods to integrate partial probabilistic 

data with expert knowledge (Das 2004, Zhong and McCabe 2007). 

Several root-cause analyses have resulted in often synonymous sets of influential factors, metrics, and 

measures to explain the reasons behind cost overruns. Poor project phasing was reported in 70% of failed 

projects (Twigge-Molecey 2003). Statistical analyses have drawn correlations, and often qualitatively 

elaborated on causations between influential factors and concepts, such as remoteness, team 

development, and permitting problems across industrial megaprojects and sectors. For instance, the 

average cost overrun for a variety of contract methods, including lump sum, engineer-procure-construction 

management (EPC/M), alliancing, and hybrid forms, was reported to be around 15%, 25%, 50% and 

negative 5%, respectively. Lump sum contracts are considered suboptimal based on cost competitiveness 

and the tendency to lump too much risk into the cost. The ratio between the winning bid and the first runner 

up was qualitatively correlated with project failures (Merrow 2011). Therefore, sources of empirical studies 

and qualitative knowledge exist within the literature to draw causal relationships. Moreover, few industry 

best practices for quantification of systematic and project-specific risks and their incorporation into cost 

estimates are proposed in the Total Cost Management (TCM) framework developed and supported by the 

Association for the Advancement of Cost Engineering (AACE 2012). Building on top of these best practices, 

certain parametric methods are proposed to incorporate systematic risks through MRA (Hollmann 2016). 

The standard estimating procedure in the industry to calculate probability distribution functions for cost or 

schedule risk is Monte-Carlo simulation. It relies heavily on previous cost data and expert knowledge. 

Although Monte-Carlo simulation is a valuable tool, it has some significant shortcomings. First, the 

orthogonality of the parameters assumes each estimated item is an independent variable. This assumption 

is categorically false for megaprojects, and at best, is countered by certain manually applied correlation 

factors between the items. Second, the process is reported to be highly subjective, with a normal distribution 

of contingency estimates across projects using Monte-Carlo simulation, regardless of the principle elements 

of risk, averaged at 9% with a standard deviation of 4% (Merrow 2011). The use of probabilistic schedule 

assessment (PSA) methods to assess the failure probability of critical path items may achieve better 

objectivity (Merrow 2011, Nasir et al. 2003). 

System dynamics and discreet event simulation (DES) methods have been proposed - instead of Monte-

Carlo simulation - to drive the probability distribution function and to reduce biases and subjectivities in 

estimating process (Hollmann 2016). Key performance indicators (KPI) have been developed to optimise 

such simulations by using BBNs to monitor the KPIs and automatically propose corrective responses 



 

   

CON164-3 

(McCabe and AbouRizk 2001). This allows for better resource planning, which is a major project-specific 

risk for cost overruns. DES is especially useful when the scope definition is complete and the project is 

ready for construction. However, such high degree of scope definition required for DES is not usually 

achieved at the end of the bankable feasibility study in megaprojects - when the contingency is set for 

financing; also, the method does not address the systematic risks and procedural weaknesses.  

Hence, although academic research and industry best practices recommend methods to deal with 

uncertainty and estimates, the longevity and complexity of mega-projects and their procedures still allow 

for errors, miscalculations, and a wide range of economic, political, and personal biases to impact the 

outcomes (Flyvbjerg 2009). Addressing this problem in a meaningful way requires dividing it to three main 

components. First, this problem is due to lack of a comprehensive knowledge base that systematically 

captures the historical data and knowledge, and maintains corporate memory as it continually expands with 

new projects. Such knowledge base should be designed to allow efficient and logical deductions and 

inferences. Second, expanding on previous suggestions (Merrow 2011), the system requires a probabilistic 

model that integrates data and knowledge to provide objective base-rate probabilistic inference. Third, the 

system must be implemented within industry environments to create an organizational learning process. In 

summary, to build on principles of intelligent system design, this system requires, representation, inference, 

and learning (Koller and Friedman 2013). This paper presents our early efforts to address the first problem. 

1.1 Project Data and Knowledge 

Industrial megaprojects are not just multidisciplinary in the sense of involving multiple trades and disciplines. 

They are as well products of multi-agent processes. Although engineering companies typically draw the 

cost estimate and its contingency, these projects involve multiple owner companies, finance providers, 

construction contractors, vendors, and in most cases, host governments. Moreover, stakeholders that are 

impacted by the project can influence the process. These agents not only have different interests; they have 

different understanding of the project as well as its risks. The causes and reasons of cost overruns can 

usually be traced back to inefficiencies that involve more than one agent. 

The most frequent medium of megaproject data and knowledge is reports and documents. There is no 

accepted or standardized format for project management data within the industry. The industry’s most 

recent approach has been the development of Building Information Modeling (BIM) as a systematic design-

build modeling process. The necessity for information exchange within BIM processes led to the creation 

of the Industry Foundation Classes (IFC) as a data model for BIM objects (ISO 16739). Although BIM is 

extremely powerful, it has not been extended to include project management knowledge, especially outside 

the architectural, engineering, and construction (AEC) industry. The intersection of AEC with the 

infrastructure and industrial sectors remains vague, especially when it comes to project management 

knowledge. Similar to IFC, there have been efforts to create a data model for certain subgroups of industrial 

projects. Those efforts have resulted in ISO 15926, a standard for the integration of life-cycle data for 

process plants, and oil and gas production facilities. ISO 15926, for instance, presents a detailed data 

structure for process and instrumentation diagrams (P&ID) data of process plants. The standard is not 

extended in any meaningful way to project management data and knowledge. Therefore, this work can as 

well be considered an extension of BIM or IFC into project knowledge for infrastructure and industrial 

megaprojects. 

There are two main levels of project data: overall project data, and, project lifecycle data. While most efforts 

in megaprojects research are focused on overall project data, the project lifecycle data appears to be an 

invaluable - and yet a rare - resource to better understand the projects. 

Overall project data considers the project as the main unit of analysis. For example, items like CapEx, 

schedule, total man-hours, and plant production rates, as well as properties that are not changed during 

the project like location characteristics. Capturing overall project data requires great diligence in adjusting 

for currency, inflation, escalation, and location characteristics, for accuracy and provenance. For instance, 

a billion-dollar project in China at 2010 can not be compared with a billion-dollar project in Canada at 2015 
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without proper adjustments. A knowledge base should allow for such adjustments and the integration of 

partial data in an efficient way. 

Project lifecycle data, however, takes sub-projects or project phases as the main unit of analysis. The 

issue with capturing project lifecycle data is that different methods and philosophies of project phasing and 

planning are employed in different sectors. The two methods used extensively today in approaching 

projects were originally developed by Construction Industry Institute (CII) (Gibsin and Dumont 1996) and 

Rand Corporation (Merrow et al. 1981). The phasing philosophy is basically the same for both methods, 

and consists of dividing the project to four or five phases of conceptual, prefeasibility, feasibility, and 

execution or their equivalents. CII created the project definition rating index (PDRI) across all sectors of 

buildings, infrastructure, and industrial projects. Rand Corporation conducted many of the early research in 

industrial projects and developed the Front-End Loading (FEL) phasing and rating systems. Later, the FEL 

system was expanded in detail (Merrow, 2011). Most industrial projects are developed on some version of 

the FEL phasing system in conjunction with AACE best practices for estimation classes. PDRI is often 

adopted within the infrastructure and building sectors. Aside from the procedures on project phasing and 

scope definition, few sources have published guidelines on data collection and management in 

megaprojects for future inference (Hollmann 2016; AACE 2012).  

The lack of literature on data driven approaches in estimating and inferences across the megaprojects 

domain has largely resulted from the confidentiality of these data. High level descriptions of historical 

projects database design are seldom reported (Musgrove 2008). Most project databases, even within one 

engineering firm, exist in disconnected data silos. Unfortunately, historical data is often not utilised to any 

of its potentials and loses relevance with time due to the lack of proper adjustments. A project knowledge 

base can help facilitate data collection, processing, and utilization across the industry. The unified 

knowledge base design can happen without compromising the confidentiality of the data instances. 

Moreover, such medium is increasingly necessary in the current landscape of open public data to increase 

the effectiveness of the cause. 

1.2 Knowledge Base Design 

The ability to perform logical deductions is of great benefit to create a project knowledge base for efficient 

probabilistic inferences. This, as discussed, is due to complexities of megaprojects across different sectors, 

and the need to use and partition the partial data. Moreover, interoperability and reusability of the data 

structure and knowledge base is of major importance for any meaningful implementation. An 

implementation of graph data structure on more than twenty million lessons learned documents in National 

Aeronautics and Space Administration (NASA) reported a significant increase in utilization of the database 

by projects staff, as opposed to the previous relational database with SQL query system (Maza 2015). 

Considering the great potential of logical deduction and inferences through ontology engineering, and 

interoperability and reusability through linked data and semantic web, the graphical data structure appears 

suitable for the project knowledge base design.  

The literature on the applications of linked data, semantic web, and the ontology engineering around the 

megaprojects domain is plentiful. A comprehensive review of the field divided these applications based on 

their content to three general groups, namely, interoperability, linking across domains, and, logical 

inferences and proof (Pauwels et al. 2017). Although this categorization is a bit vague, it has grouped most 

applications of ontology engineering in project and construction management and estimation (El-Diraby et 

al. 2005, El-Diraby 2013, Staub-French et al. 2003) in the “linking across domains” category. What those 

studies have in common is utilizing ontologies for the process of knowledge transfer within construction 

management domain. In other words, they deal with pockets of information as their unit of analysis. In 

contrast, the objective of this research is to create a medium to capture project data and knowledge and to 

use this information for probabilistic inferences about the projects. Therefore, this research appears to be 

better aligned with key categories of “interoperability” and “logical inferences” and deductions for 

expressivity and data manipulation. 
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2 LINKED DATA AND SEMANTIC WEB 

The World Wide Web started in 1989 and has transformed virtually every activity of the modern world. The 

invention is based on three main technological ideas: uniform resource locators/identifiers (URL/URIs), 

hypertext markup language (HTML), and, hypertext transfer protocol (HTTP). These three technologies 

enabled document libraries residing on local server networks among aerospace and defence contractors, 

academic institutions, and government agencies, to be forged into the modern internet (Leiner et al. 2009). 

There have been efforts to increase the machine readability of the content on the internet from its early 

inception. Such efforts first resulted in the 1998 creation of extensible markup language (XML). XML used 

a series of elements to create and tag the content of a document. These elements facilitated the traceability 

and to some extent machine readability of the web (Bray et al. 1998). Soon after, XML developers started 

sharing certain schemas across domains by using domain specific data descriptions. The idea of sharing 

schemas with URLs suggested the use of URLs for the actual data instances. The semantic web was first 

introduced in 2001 (Berners-Lee et al. 2001) and gave birth to a simple data format called resource 

description framework (RDF). RDF is a simple semantic sentence that links a subject through a predicate 

towards an object, all with universally unique URIs. Figure 1 depicts an RDF triple, their URIs and the links 

to their universal semantics. The RDF system can store the data, its semantics, and its structure, thereby 

creating a knowledge base. Later, the potential of RDF format to link between different data endpoints was 

embraced by the term “Linked Data” (Berners-Lee 2006). 

 

Figure 1: Resource Description Framework (RDF) triple of a simple sentence “Sky is Blue” 

2.1 Graph Data Structure 

The linked data aspect of the RDF format created a graph of nodes and edges. This structure is powerful 

in its ability to link data endpoints across the internet. One notable example is DBpedia that created a linked 

data endpoint of extracted structured information from Wikipedia (Bizer et al. 2009). This created universal 

semantics for many of the world’s abstract things. Figure 1 shows how objects like sky and blue have unified 

meanings in DBpedia and can be linked by certain predicates (properties) to their universal semantics. 

Many applications of Semantic Web and Linked Data are emerging from across the internet to create a 

shared understanding of the world (e.g. Schema.org (Schema 2017)). This notion contributes to the internet 

for communication of smart devices, i.e. the internet of things (IoT). 

2.2 Ontology Engineering 

The use of the term ontology in the context of knowledge representation refers to a shared understanding 

of a domain of interest. It consists of three main components: explicit description of concepts (classes or 

concepts), properties of the concepts, and restrictions on properties (axioms or restrictions). The ontology 
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together with a set of individual instances of classes constitute a knowledge base (Uschold and Gruninger 

1996; Noy and McGuinness 2001).  

The early steps in creating a logical language for the semantic web involved using RDF formats resulted in 

a language called DAML+OIL (McGuinness et al. 2002).  In 2004, the first version of a simple yet powerful 

logical language based on first order logic called Web Ontology Language (OWL) was introduced by World 

Wide Web Consortium (W3C 2004). OWL combined the interoperability and machine readability of Linked 

Data format with the possibility of creating logical representations, and hence, created a powerful, 

expressive, and interoperable data structure. The application of ontology engineering in the civil engineering 

have started before OWL, with the first translations of the IFC data model to logical ontologies 

(Katranuschkov et al. 2003). Completing this translation using OWL opened the door for future research in 

OWL in the civil engineering industry and the integration of BIM and Semantic Web (Beetz et al. 2005). 

3 UNIFORM PROJECT ONTOLOGY 

To achieve true interoperability, one must search for prior developed ontologies in the domain of interest. 

Unfortunately, the authors were not able to find such ontologies with similar purpose to this research. As 

discussed, most similar efforts are conducted in the realm of facilitating the project work-flow process and 

not for capturing knowledge. Therefore, it was decided to initiate the uniform project ontology (UP) with the 

objective of creating a medium for capturing project data and knowledge, on which future probabilistic 

inferences could be performed.   

The task of creating ontology involves identifying the key concepts that describe a megaproject and to 

devise measures for such concepts by studying the literature and conducting interviews with experts within 

the field. This is relatively simple for highly tangible concepts like CapEx, but requires great attention for 

less tangible concepts such as the degree of team development. Such concepts should be dealt with by 

creating composite measures of several associated factors to achieve a better measure. Given the objective 

of drawing reliable probabilistic inferences from these measures in the highly complex domain of 

megaprojects, the reliability and validity of such measures are of great concern. In other words, it is 

important to make sure those measures record consistent values (reliability), and well represent the actual 

concept (validity), in all different settings (Singleton et al. 1993). For instance, questions about team 

development could have different meanings in China versus Canada. 

Figure 2 shows the high-level structure of UP ontology with its three classes of Project, Assessment and 

InfoCard. As discussed, there are various levels of data maturity and availability for megaprojects and there 

are different assessment methods across industry sectors (e.g. PDRI, FEL). By using “has_Assessment” 

and “has_InfoCard” properties, an instance of the class Project is related to an instance of its lifecycle and 

overall project data. The chemical process characteristics and other dimensions like temporal, spatial and 

knowledge provenance are to be defined in parallel to the principle classes. 

The design of an ontology is an iterative process. Considering the scope and objectives are of major 

importance because increasing expressivity often comes with the price of losing generality (Noy and 

McGuinness 2001). The UP ontology is designed at high levels to allow for its application and expansion in 

different megaproject sectors by defining assessment classes. However, the primary goal of this study is to 

expand this ontology for industrial megaprojects. 

Figure 3 shows an adaptation of Natural Resources Canada (NRCan 2016) publicly available database of 

natural resource projects in UP ontology. The database contains all planned and in-construction natural 

resource projects across Canada in the mining and energy sectors. Although only high level overall project 

data was available through NRCan, the flexibility of linked databases allows for partial data to be 

conveniently partitioned with full data inference. The reflection of the database in Figure 3 is a dimension 

of the graph database, which is not manipulated as a visualization of the original relational data. The only 

source of manipulation in the figure is the red circles (projects) that are proportionally enlarged based on 

the project CapEx. The blue circles represent companies. The network graph structure allows instant 

realizations from data about the industry and can unfold patterns in any of its different dimensions. such as 
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the distribution of projects with multiple owners, owners with multiple projects, and the companies with 

projects in both the energy and the mining sectors. For example, it is observable that joint venture projects 

(projects with multiple owners) are more common in energy sector compared to the mining sector. 

 

Figure 2: General architecture of UP ontology 

The two main characteristics of linked data and semantic web that distinguishes them from the relational 

database models are observed in Figure 3. First, the database is a graph with semantics. It is interoperable 

because of the semantics involved and can be seamlessly used by applications. Other linked databases 

(e.g. DBpedia) can be called in over the internet, without requiring them be hosted in the database 

(Discoverability). The database can be used as a central infrastructure - fully or partially - for different 

initiatives (Reusability and/or repackaging of information). For example, Figure 4 is a transfer of BC Hydro 

energy projects to their corresponding geospatial graph. This sematic rich data infrastructure can be used 

for different sort of portfolio risk analysis in deferent levels. 

Second, the linked database allows convenient logical deductions and inferences. For example, operations 

can be done on inferred groups of projects with more than one owner company, i.e. joint venture projects. 

The query results can robustly order the data based on hierarchies and characteristics, (i.e. all projects, 

versus, all mining projects, versus, all iron and steel projects) which is highly flexible for later probabilistic 

inferences.  

4 FUTURE WORK 

In completing the first step of the project, validation of certain measures and their details and specifics for 

UP ontology is in progress. Also, future work on UP includes the incorporation of temporal and spatial 

definitions, as well as measures for assigning provenance to knowledge. Expanding on industrial projects, 

the process definitions shall be added. The next steps involve incorporating the ontology and instances into 

a probabilistic inference model, namely Bayesian belief networks. 
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Figure 3: Adaptation of NRC natural resources major project database across Canada as linked data in 
UP ontology 

 

Figure 4: Distribution of BC Hydro capital projects across British Columbia 
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