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Abstract: The deterioration of bridges is dependent on complex interactions of multiple factors. Existing 
research efforts have focused on predicting bridge deterioration using indicators, which are limited in 
capturing the many deterioration factors and the interactions between them. On the other hand, a large 
amount of bridge data is being generated, which opens opportunities to big bridge data analytics for 
improved bridge deterioration prediction. Such bridge data include: (1) National Bridge Inventory (NBI) and 
National Bridge Elements (NBE) data, (2) traffic, weather, climate, and natural hazard data, and (3) data 
from bridge inspection reports. There is, thus, a need for data integration methods that are able to integrate 
bridge data from multiple sources and in heterogeneous formats. To address this need, this paper proposes 
an ontology-based data integration methodology. Ontology aims to facilitate the integration based on 
content and domain-specific meaning. The proposed methodology includes two primary components: (1) 
ontology-based data linking: identifying the links among data from different sources, and (2) ontology-based 
data fusion: resolving conflicts between the linked data and then fusing the conflict-resolved linked data. 
This paper focuses on presenting the proposed ontology-based data linking methodology and its 
experimental results. Data linking is defined as a multi-class classification problem – classifying data links 
into multiple types, including “is-type-of”, “is-supertype-of”, “is-part-of”, “is-parent-of”, “is-related-to”, “is-
equivalent-to”, and “has-no-match”. In developing the methodology, several comparison functions (for 
comparing the similarities between attribute values) and machine learning algorithms (for the classification 
of data links) were implemented and evaluated based on accuracy. The experimental results show that the 
proposed data linking methodology achieved an accuracy of 98.7%. 

1 INTRODUCTION 

The success of bridge maintenance, repair, and rehabilitation (MR&R) decisions for maintaining and 
improving bridge conditions largely depends on the ability of predicting future bridge deterioration (Huang 
2010, Liu and Madanat 2014). Predicting bridge deterioration, however, is challenging. According to the 
Federal Highway Administration (FHWA), the deterioration of a bridge is dependent on complex interactions 
of multiple factors, such as: (1) the original design and the geometrical parameters of the bridge, (2) the 
previous extents and severities of the deterioration conditions of the bridge, such as cracking and corrosion, 
(3) the previous MR&R actions, (4) the environmental conditions of climate and natural hazards, and (5) 
the traffic volumes, frequencies, and types, etc. (FHW 2013). 

Existing research efforts (e.g., Bu et al. 2014, Huang 2010) for bridge deterioration prediction, despite their 
importance, are still limited, because they have focused on predicting bridge deterioration using indicators 
that are insufficient in capturing the many deterioration factors and the interactions between them. More 
specifically, such efforts are limited in one or more of the following four ways. First, some efforts developed 
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prediction models using either only one source of data or one source partially, without taking advantage of 
data from multiple sources. For example, Bu et al. (2014) developed a backward prediction model for 
predicting the condition states of bridge elements using condition rating data collected from the Queensland 
Department of Transportation and Main Roads (QTMR). Second, others focused on predicting the 
deterioration of a single bridge element, without considering the deterioration of different elements and how 
they affect the bridge as a whole. For example, Huang (2010) developed an artificial neural network (ANN) 
model for predicting the condition states of concrete decks using concrete deck condition rating data from 
the Wisconsin Pontis bridge management system (BMS). Third, and most importantly, none of the existing 
efforts used any of the data that are buried in inspection reports. These reports contain very rich data about 
bridge deficiencies (e.g., types, onset times, and severities, etc.) and maintenance actions (e.g., methods, 
materials, etc.), which are important to utilize when predicting deterioration. Fourth, no deterioration 
models/methods can integrate (i.e., link and fuse) data of heterogeneous types to help predict deterioration. 

On the other hand, a large amount of bridge data is being generated, which opens opportunities to big 
bridge data analytics for improved bridge deterioration prediction. Such bridge data include: (1) National 
Bridge Inventory (NBI) and National Bridge Elements (NBE) data, (2) traffic, weather, climate, and natural 
hazard data, and (3) data from bridge inspection reports. There is, thus, a need for data integration methods 
that are able to integrate bridge data from distributed sources and in heterogeneous formats. To address 
this need, the authors propose an ontology-based data integration methodology, which includes two primary 
components: (1) ontology-based data linking: identifying the links among data from different sources, and 
(2) ontology-based data fusion: resolving conflicts between the linked data, and then fusing the conflict-
resolved linked data. This paper focuses on presenting the proposed ontology-based data linking 
methodology and its experimental results. In this paper, data linking is defined as a multi-class classification 

problem – classifying data links into multiple types, including “is-type-of”, “is-supertype-of”, “is-part-of”, “is-

parent-of”, “is-related-to”, “is-equivalent-to”, and “has-no-match”. In developing the methodology, several 
comparison functions (for comparing the similarities between attribute values) and machine learning (ML) 
algorithms (for classifying data links into the data link types) were implemented and evaluated based on 
accuracy. In the following sections, this paper presents the proposed ontology-based data integration 
approach, and then discusses the proposed ontology-based data linking methodology and its experimental 
results in more detail. 

2 BACKGROUND 

Data integration aims to link and fuse data residing at different data sources, and provide a reconciled, 
integrated, yet concise view of these data (Lenzerini 2002). Generally, a data integration system 
encompasses three primary components: schema mapping, data linking, and data fusion (Naumann et al. 
2006, Bleihoder and Naumann 2009). Schema mapping aims to conduct the mapping and resolve 
inconsistencies at the schema level by identifying the corresponding classes and properties that are used 
in the different schemas that are being mapped. Data linking and data fusion, together, aim to conduct the 
mapping and resolve inconsistences at the tuple and value level. Data linking aims to link the data entries 
that follow certain link types (e.g., “is-equivalent-to”), while data fusion aims to identify and resolve the 
conflicts between the data values of the linked data (Naumann et al. 2006). 

Data linking [also known as entity resolution, record linkage, de-duplication, data association (Singla and 
Domingos 2006)] is a critical step in data integration because it directly affects the performance of the 
subsequent data fusion step and the entire data integration system. For example, linking two data entries 
that should not be linked will likely result in subsequent errors in data fusion and, thus, affect the 
performance of the entire data integration system. Data linking has been previously studied in the computer 
science domain. For example, Cochinwala et al. (2001) proposed a data linking model using a decision tree 
algorithm. Bilenko and Mooney (2003) applied support vector machines (SVM) for linking data. Christen 
(2008) compared an SVM algorithm with a nearest neighbors (NN) algorithm for supporting data linking. 

Despite the achievements of the efforts, three main gaps of knowledge in the area of data linking have not 
been well addressed. First, there is a lack of studies that compare the performance of different ML 
algorithms for supporting data linking, especially for supporting bridge data linking. Second, there is a lack 
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of efforts that identify the semantic types of the data links (e.g., the link between data describing a “wearing 
surface” and data describing “deck” is an “is-part-of” link). For example, the above-mentioned data linking 
models treated data linking as a binary classification problem that aims to classify data links into “match” 
and “non-match” only. Identifying the semantic types of the data links is essential to further determine how 
the linked data will be fused. Third, and most importantly, there is a lack of studies that use ontology for 
facilitating data linking. Ontology has been used in many ML tasks and has been proven to be able to 
improve the performance of ML. However, using ontology for supporting data linking, especially for 
supporting domain-specific data linking tasks, has not been well studied. To address these gaps, this paper 
proposes an ontology-based data integration methodology. In the following sections, the authors first 
present the proposed ontology-based data integration approach, and then focus on discussing the 
proposed ontology-based data linking methodology and its experimental results in more detail. 

3 PROPOSED ONTOLOGY-BASED DATA INTEGRATION APPROACH 

The proposed ontology-based data integration approach is illustrated in Figure 1. The proposed approach 
relies on three primary components, which are introduced in each of the following subsections: automated 
information extraction, global schema, and ontology-based data linking and fusion. 

 

Figure 1: Proposed ontology-based data integration methodology 

3.1 Automated Information Extraction  

Automated information extraction (IE) aims to extract information about bridge conditions and maintenance 
actions from bridge inspection reports, and represent the extracted information in a structured way. The 
unstructured textual data that are buried in the reports provide detailed descriptions about bridge conditions 
and maintenance history. These data are, thus, expected to improve bridge deterioration prediction. 
However, because of the unstructured nature of the textual data, IE methods are needed to extract the 
target information from the reports, and represent the extracted information in a structured format. 
Subsequently, the extracted information can then be integrated with the other structured data/information 
(e.g., NBI and NBE data) for supporting improved bridge deterioration prediction. In the proposed approach, 
automated IE from bridge inspection reports includes two main steps. First, the following information entities 
are recognized and extracted using an ontology-based semi-supervised conditional random fields (CRF) 
IE methodology (Liu and El-Gohary 2017a). The information entities that need to be extracted include: 
<bridge element>, <deficiency>, <deficiency cause>, <maintenance action>, <maintenance material>, 
<numerical measure>, <numerical measure unit>, <categorical quantity measure>, <categorical severity 
measure>, and <date>. Second, the dependency relations between the extracted information entities are 
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analyzed using an ontology-based, similarity-based dependency parsing (DP) methodology (Liu and El-
Gohary 2017b). The DP methodology aims to link the extracted, yet isolated, information entities into 
concepts, and represent the concepts into structured semantic information sets (SISs). The extracted, 
structured data will be linked to other structured bridge data (e.g., NBI and NBE data) under a global 
schema. 

3.2 Global Schema 

A data schema defines how data are organized and structured. Each type of bridge data – from a different 
source – is organized by a different local schema, depending on the data source. For example, the NBI 
data schema uses 140 attributes (e.g., condition ratings of deck, superstructure, and substructure) to 
organize bridge-level inspection data. The schema of the extracted data from the reports, as introduced 
above, uses 10 attributes to organize element-level inspection data. A global schema that provides a 
reconciled, integrated, yet concise view of the bridge data is needed for supporting the integration of the 
data. More importantly, the global schema should also be able to capture the semantics of the data links. 
To this end, the authors propose a heterogeneous information network (HIN)-based global schema. An 
HIN-based global schema is proposed because it allows to capture the rich, interrelated semantic 
information instances and their semantic links (Han et al. 2012). As shown in Figure 2, the proposed HIN-
based global schema consists of nodes for representing attributes from different local schemas and edges 
for representing the relationships (i.e., semantic links) between nodes.  

 

Figure 2: Proposed global schema 

3.3 Ontology-Based Data Linking and Fusion 

Ontology-based data linking and data fusion are at the cornerstone of the proposed data integration 
approach. Ontology aims to facilitate the integration based on content and domain-specific meaning. 
Ontology-based data linking aims to identify the links among data from different sources. Ontology-based 
data fusion aims to resolve conflicts between the linked data and then fuse conflict-resolved linked data. In 
the following sections, this paper focuses on presenting the proposed ontology-based data linking 
methodology and its experimental results.  
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4 PROPOSED ONTOLOGY-BASED DATA LINKING METHODOLOGY 

The proposed ontology-based data linking methodology aims to identify the links among data from different 
sources. For a pair of data to be linked, the proposed methodology aims to classify the link of the data pair 
into one of the following types, including: (1) is-type-of (or is-supertype-of) link, where the subject datum is 
a subtype (or supertype) of the datum in comparison, (2) is-part-of (or is-parent-of) link, where the subject 
datum is a part (or whole) of the datum in comparison, (3) is-related-to link, where the subject datum has a 
non-hierarchical relation with the datum in comparison, (4) is-equivalent-to link, where the subject datum is 
same/equivalent as the datum in comparison, and (5) has-no-match link, where none of the above-
mentioned links apply (i.e., a match was not found). To achieve this goal, the proposed ontology-based 
data linking methodology is composed of two main components: (1) ontology-based feature representation, 
and (2) ML-based link classification. In the following subsections, each component is introduced in more 
detail. 

4.1 Ontology-Based Feature Representation 

As shown in Figure 3, the authors propose a new ontology-based feature representation for representing 
data that need to be linked. The proposed representation works as follows. First, for a data pair to be linked, 
each pair of attribute values (e.g., A1A and A1B for data entry A and B in Figure 3) is compared using a 
comparison function (CF). Second, the CF returns a similarity value (e.g., S1 in Figure 3) indicating to what 
extent the attribute values are similar. Third, the previous two steps are repeated until all corresponding 
attribute value pairs are compared. Finally, based on a bridge deterioration knowledge ontology (Liu and 
El-Gohary 2016), the ontology-based (i.e., semantic) features of the data pair are generated (i.e., O1-5 in 
Figure 3). In the proposed representation, O1 to O5 are binary (with 1 being true and 0 being false) ontology-
based features of data pair A and B, representing is-type-of, is-supertype-of, is-part-of, is-parent-of, and is-
equivalent-to relationships between data entries A and B, respectively. The proposed representation, thus, 
includes a set of similarity values (measured by a CF) and ontology-based binary features. In selecting the 
CF, a set of potential CFs were tested and evaluated based on accuracy. The details about the tested CFs 
are presented in Table 1, and the evaluation results are presented and discussed in Section 5. 

 

Figure 3: Proposed ontology-based feature representation 

4.2 Machine Learning-Based Data Linking 

In order to select which ML algorithm to use for classifying the data links into semantic types, five commonly-
used ML algorithms were implemented and tested, including support vector machines (SVM), logistic 
regression (LR), Naïve Bayes (NB), decision tree, and nearest neighbors. SVM is a large margin theory-
based ML algorithm that maps input data to a high-dimensional feature space using kernel functions and 
constructs a linear decision hyper plane in the feature space to classify data (even those non-linearly 
separable ones in original feature space) into different categories (Cortes and Vapnik 1995). In this paper, 
a set of SVM algorithms [with different kernel functions, including Polynomial, Radial Basis Function (RBF), 
and Sigmoid kernels] were implemented and tested. LR and NB are probabilistic models for ML. LR aims 
to learn a discriminative classifier that directly models the conditional probability of a label (i.e., a predicted 
class) given input data, using a logistic function (Ng and Jordan 2002). Similar to many other ML-based 
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classification algorithms, the performance of LR can be improved by using regularization, either with L1 or 
L2 norm (Ng and Jordan 2002). In this paper, LR algorithms with L1 and L2 regularizations were 
implemented and tested. NB, on the other hand, aims to learn a generative classifier that models the joint 
probability of a label and inputs and assumes independence between features of inputs to indirectly 
compute the probability of a label given inputs (Murphy 2006). Decision tree is a ML algorithm that aims to 
find a set of decision rules in a decision tree that can recursively split independent features into 
homogeneous zones and eventually reach a final decision that predicts a label for an input (Pradhan 2013). 
Nearest neighbors is an instance-based ML algorithm that predicts a label for an input based on the majority 
labels of its k-nearest neighbors (Weinberger and Saul 2009). 

The performance of the above-mentioned ML algorithms in data linking was evaluated using accuracy. 
Accuracy, here, is the percentage of the number of correctly-classified links out of the total number of links. 
The accuracy was calculated by comparing the algorithm-predicted link types with the link types in a 
manually-developed gold standard. The evaluation results are discussed in Section 5. 

Table 1: Selected comparison functions a 

No. Comparison function b Description 

CF1 Extract string comparison 
It returns 1 if the two attribute values are exactly same; 
otherwise, returns 0. 

CF2 
Extract string comparison 
(beginning) 

It returns 1 if the first 3 characters of the two attribute values 
are exactly same; otherwise, returns 0. 

CF3 Extract string comparison (end) 
It returns 1 if the last 3 characters of the two attribute values 
are exactly same; otherwise, returns 0. 

CF4 
Levenshtein edit distance string 
comparison 

It measures the smallest number of operations (insertion, 
deletion, and substitution) needed to convert an attribute value 
to another. The number is normalized by the maximum string 
length of the two attribute values. 

CF5 
Smith-Waterman edit distance 
string comparison 

Similar to CF4, it defines the costs for five operations (exact 
match, approximate match, mismatch, gap start penalty, and 
gap continuation penalty) for two characters. The total cost is 
normalized by the average length of the two attribute values. 

CF6 
Bigram-based string 
comparison (overlap coefficient) 

It measures the number of common bigram characters in the 
two attribute values. The number is normalized by the 
minimum number of bigram characters of the two attribute 
values. 

CF7 
Bigram-based string 
comparison (Jaccard 
coefficient) 

It measures the number of common bigram characters in the 
two attribute values. The number is normalized by the total 
number of bigram characters of the two attribute values minus 
the number of common bigrams. 

CF8 
Bigram-based string 
comparison (dice coefficient) 

It measures the number of common bigram characters in the 
two attribute values. The number is normalized by the total 
number of bigram characters of the two attribute values. 

CF9 Jaro string comparison 
It measures the number of common bigrams and the number 
of transpositions in common bigrams of the two attribute 
values. 

CF10 Winkler string comparison 
As a modified version of CF9, it also considers the number of 
same characters at the beginning of the two attribute values. 

a CFs are used for measuring the similarities between attribute values whose type is string. For the attribute 
values whose type is numeric (e.g., numerical measure and date in the proposed schema), their similarities 
are measured by exact comparison, with “1” being same and “0” being different. 
b CFs are selected based on the review of Bleihoder and Naumann (2009) and Christen (2012). For detailed 
explanations of the CFs, the readers are referred to these references. 
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5 EXPERIMENTAL RESULTS AND ANALYSIS 

In this paper, the authors created a dataset to evaluate the performance of the proposed ontology-based 
data linking methodology. The dataset contains the 2006 NBI data and the data from the 2006 bridge 
inspection report of the I-35W Mississippi River Bridge. In creating the dataset, first, a total of 400 data 
instances were extracted [using an ontology-based semi-supervised CRF-based IE methodology (Liu and 
El-Gohary 2017a)] and were represented in a structured way [using an ontology-based similarity-based DP 
methodology (Liu and El-Gohary 2017b)]. Then, the 2006 NBI data of the bridge were collected from the 
FHWA. The gold standard links between the collected data were, then, manually annotated. Examples of 
the links between the collected data are shown in Table 2. The performance results of the proposed data 
linking methodology are summarized in Tables 3 and 4. The comparison of the performances of the 
nonontology-based and ontology-based data linking approaches is shown in Tables 5 and 6. 

Table 2: Examples of the links between the collected data a 

No. 
Data extracted from bridge inspection report (partial) b 

ET DY NM NU SM QM DT … 

D1 Concrete overlay Transverse crack 3,000 LF N/A N/A 2006 

… 

D2 Overlay Patched area N/A N/A Minor Some 2006 

D3 Deck Transverse leaching crack N/A N/A Moderate N/A N/A 

D4 Curb Crack N/A N/A Moderate N/A N/A 

D5 Overlay Patched area N/A N/A Minor Some 2006 
a D1 is linked to D2 through an “is-type-of” link. D2 and D4 are linked to D3 through “is-part-of” links. D2 is 
also linked to D4 through an “is-related-to” link because they are parts of D3. D5 is linked to D2 through an 
“is-equivalent-to” link because they are same.  
b The indexes follow those defined in Figure 2. 

Table 3 summarizes the performance of the proposed nonontology-based data linking methodology, using 
different ML algorithms and CFs. As shown in Table 3, the bigram-based string CFs (i.e., CF6 to CF8), 
compared to the other CFs, achieved the highest accuracy (i.e., 89.3%). This indicates that the bigram-
based string CFs are more effective in capturing the similarities between the attribute values for classifying 
data links into the defined link types. Table 3 also shows that the SVM with RBF kernel and the LR with L1 
regularization, compared to the other ML algorithms, achieved the highest accuracy (i.e., 89.3%). This 
indicates that SVM and LR are better at capturing the distributions of the input data for data linking. 

Table 3: Accuracy of the nonontology-based data linking methodology using different machine learning 
algorithms and comparison functions 

CF a 

 Machine learning algorithms 

SVM  LR 
DT NN NB 

Polynomial RBF Sigmoid  L1 L2 

CF1 82.7% 87.3% 87.3%  88.0% 87.3% 82.0% 87.3% 87.3% 

CF2 82.7% 88.3% 88.3%  89.0% 87.3% 83.7% 87.3% 87.0% 

CF3 82.7% 87.3% 87.3%  88.0% 87.3% 82.0% 87.3% 87.3% 

CF4 82.7% 82.7% 82.7%  85.3% 78.7% 67.0% 79.3% 82.7% 

CF5 82.7% 84.3% 84.3%  84.3% 84.3% 70.0% 83.7% 79.0% 

CF6 82.7% 89.3% 87.3%  89.3% 87.3% 77.7% 84.0% 82.7% 

CF7 82.7% 89.3% 87.3%  89.3% 87.3% 76.7% 84.0% 83.3% 

CF8 82.7% 89.3% 87.3%  89.3% 87.3% 76.7% 84.0% 82.7% 

CF9 82.7% 86.3% 87.3%  85.3% 87.3% 78.3% 86.0% 82.7% 

CF10 82.7% 86.3% 87.3%  85.3% 87.3% 77.3% 76.0% 82.7% 
a CF = comparison function, and the CF index follows that in Table 1. 
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Table 4 shows the performance of the proposed ontology-based data linking methodology, using different 

ML algorithms and CFs. As seen, CF4, CF9, and CF10 achieved the highest performance (i.e., an accuracy 

of 98.7%) compared to the other CFs. The performance result of CF4 is somewhat inconsistent with the 

results obtained when only using nonontology-based features (shown in Table 3). In the nonontology-based 

case, CF4 did not achieve an accuracy comparable to the highest. This could be attributed to the 

introduction of ontology-based features; the introduced features changed the entire feature space, resulting 

in CF4 becoming more informative. On the other hand, the performance results of CF9 and CF10 (which 

are bigram-based CFs) are consistent with the results in Table 3, where the bigram-based CFs 

outperformed the others. Also, similar to the nonontology-based case, LR with L1 and L2 regularizations 

achieved the highest accuracy for the ontology-based methodology. This further indicates the better 

capability of LR in supporting bridge data linking. However, although SVM did not achieve the best 

performance in this case, it only performed slightly worse than LR with an accuracy of 98.0%. 

Table 4: Accuracy of the ontology-based data linking methodology using different machine learning 
algorithms and comparison functions 

CF a 

 Machine learning algorithms 

SVM  LR 
DT NN NB 

Polynomial RBF Sigmoid  L1 L2 

CF1 82.7% 96.0% 91.3%  98.0% 96.3% 87.7% 87.3% 90.3% 

CF2 82.7% 97.3% 91.0%  96.7% 98.0% 89.0% 88.0% 90.3% 

CF3 82.7% 96.0% 89.7%  94.0% 98.0% 87.7% 87.3% 90.7% 

CF4 82.7% 98.3% 89.7%  98.7% 98.7% 88.0% 88.0% 90.3% 

CF5 82.7% 89.3% 84.3%  90.3% 89.3% 84.3% 84.0% 89.3% 

CF6 82.7% 98.0% 91.0%  98.0% 98.0% 87.7% 87.3% 90.0% 

CF7 82.7% 98.0% 91.0%  95.3% 98.0% 87.7% 87.3% 90.3% 

CF8 82.7% 98.0% 91.0%  96.3% 98.0% 87.7% 87.3% 90.0% 

CF9 82.7% 97.3% 91.0%  96.7% 98.7% 87.3% 88.3% 89.7% 

CF10 82.7% 97.3% 91.0%  93.3% 98.7% 87.3% 88.3% 89.7% 

a CF = comparison function, and the CF index follows that in Table 1. 

Table 5: Accuracy of the nonontology-based and ontology-based data linking methodologies across the 
comparison functions, using the eight tested machine learning algorithms 

CF a 
Nonontology-based b  Ontology-based b 

Mean Standard deviation   Mean Standard deviation 

CF1 86.2% 0.024  91.2% 0.053 

CF2 86.7% 0.023  91.6% 0.054 

CF3 86.2% 0.024  90.8% 0.050 

CF4 80.1% 0.057  91.8% 0.061 

CF5 81.6% 0.050  86.7% 0.031 

CF6 85.0% 0.040  91.6% 0.059 

CF7 85.0% 0.043  91.3% 0.055 

CF8 84.9% 0.043  91.4% 0.056 

CF9 84.5% 0.031  91.5% 0.056 

CF10 83.1% 0.044   91.0% 0.053 

Average 84.3% 0.038  90.9% 0.053 
a CF = comparison function, and the CF index follows that in Table 1. 
b Mean is the average of the accuracies using the eight machine learning algorithms in Table 3.   
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Table 5 compares the performance of the nonontology-based and ontology-based data linking 

methodologies across the comparison functions, using the eight tested machine learning algorithms; and 

Table 6 shows the comparison across the machine learning algorithms, using the ten tested comparison 

functions. As seen from both tables, the nonontology-based method achieved an average accuracy of 

84.3% and the ontology-based one achieved an average accuracy of 90.9%. This result, along with the rest 

of the results presented in Tables 5 and 6, show that the ontology-based data linking methodology 

outperforms the nonontology-based one. Table 6 also indicates that the use of ontology-based features 

makes the ML algorithms more stable across different CFs, because the average standard deviation (SD) 

across the CFs when considering ontology-based features (i.e., SD = 0.016) is smaller than that when not 

considering such features (i.e., SD = 0.025). However, Table 5 suggests that the use of ontology-based 

features makes the CFs less stable across different ML algorithms, because the average SD across the 

ML algorithms when considering ontology-based features (i.e., SD = 0.053) is larger than that when not 

considering such features (i.e., SD = 0.038).  

Table 6: Accuracy of the nonontology-based and ontology-based data linking methodologies across the 
machine learning algorithms, using the ten tested comparison functions 

ML a 
Nonontology-based b  Ontology-based b 

Mean Standard deviation   Mean Standard deviation 

ML1 82.7% 0.000  82.7% 0.000 

ML2 87.1% 0.022  96.6% 0.027 

ML3 86.7% 0.017  90.1% 0.021 

ML4 87.3% 0.020  95.7% 0.026 

ML5 86.2% 0.028  97.2% 0.028 

ML6 77.1% 0.052  87.4% 0.012 

ML7 83.9% 0.037  87.3% 0.013 

ML8 83.7% 0.027   90.1% 0.004 

Average 84.3% 0.025  90.9% 0.016 
a ML index follows the ML algorithm sequence in Table 3. 
b Mean is the average of the accuracies using the ten comparison functions in Table 1.   

6 CONCLUSION AND FUTURE WORK 

In this paper, the authors proposed an ontology-based data integration methodology to integrate bridge 
data from multiple sources and in heterogeneous formats for supporting improved bridge deterioration 
prediction. Such bridge data include: (1) National Bridge Inventory (NBI) and National Bridge Elements 
(NBE) data, (2) traffic, weather, climate, and natural hazard data, and (3) data from bridge inspection 
reports. The proposed ontology-based data integration methodology includes three components: (1) 
ontology-based information extraction, (2) heterogeneous information network-based global schema, and 
(3) ontology-based data linking and fusion. Ontology-based data linking and fusion are at the cornerstone 
of the proposed methodology, which aim to identify the links among data from different sources, resolve 
conflicts between the linked data, and then fuse the conflict-resolved linked data. 

This paper focused on presenting the proposed ontology-based data linking methodology. The proposed 
methodology achieved a data linking accuracy of 98.7%. In developing the methodology, a set of 
comparison functions (CFs) (for measuring the similarities between attribute values) and machine learning 
algorithms (for classifying data into different link types) were implemented and tested. The following 
conclusions were drawn from the experimental results: (1) bigram-based string CFs (e.g., bigram-based 
string comparison using overlap, Jaccard, and dice coefficients, Jaro string comparison, and Winkler string 
comparison) perform better in capturing the similarities between attribute values, (2) logistic regressions 
with L1 and L2 regularizations and support vector machines with RBF kernel function perform better in 
classifying data links into the defined types, and (3) most importantly, ontology-based features can facilitate 
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data linking. Compared to the nonontology-based data linking approach, the ontology-based approach 
improves data linking accuracy by 6.6% on average.  

In their future work, the authors will test the proposed ontology-based data linking methodology using a 
larger dataset, and will further improve the methodology based on the testing results. Also, an ontology-
based data fusion methodology will be developed to resolve conflicts between the linked data. These efforts 
will eventually enable the utilization of integrated bridge data for better supporting improved bridge 
deterioration prediction. 
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