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ABSTRACT: The upsurge in commitment to safety from industry leaders and the implementation of better 
equipment and training have generated a 67% decline in recordable incident rates during the past two 
decades.  Fatalities, however, have plateaued for the last decade and, in the past three years, have 
increased for the first time. Current research indicates that human factors like fatigue play a major role in 
accident causation and fatality occurrence. Under the effects of fatigue, the human body experiences a 
marked reduction in cognitive and physical abilities that inhibit normal thinking and motor processes. Early 
detection of fatigue could prevent high risk situations. Our hypothesis was that fatigue levels can be 
predicted based on activity variables. Activity variables are defined as the characteristics of the work 
environmental conditions, shift design, and personal habits (e.g., commute time). An activity variable 
questionnaire was created based on past literature and was delivered to a diverse sample of 160 US 
construction workers. Following this questionnaire, each worker completed a Psychomotor Vigilant Test 
(PVT) to objectively measure their actual levels of fatigue. The results indicate a correlation between the 
level of fatigue of an individual, the type of work that he/she performs and the amount of sleep obtained 
during the previous 24 hours.  These findings inform the research community about specific ways that 
fatigue can be quickly and objectively measured without the intrusive and often expensive use of 
technology. Future research should focus on further revealing the effect that each specific trade has on 
fatigue. 

1. INTRODUCTION 

It is not news that the construction sector is one of the most hazardous and deadly of the industry (Sawacha 

et al. 1999). In 2015 the construction industry accounted for a fatality rate of 9.4 for every 100,000 full-time 

equivalent workers, nearly three-times greater than that of the overall working population. A revealing factor 

of its dangerous nature is that four of the ten most dangerous jobs in the U.S. belong to the construction 

industry (U.S. Bureau of Labor Statistics 2015). 

In addition to the potential devastating effects of accidents and fatalities on the families of construction 

workers, these incidents come at a great economic cost for both the industry and society. Considering direct 

costs (medical cost), indirect costs (wages and household productivity), and the quality of life costs due to 

injury, the average construction fatality was estimated to cost $4 million (Waehrer et al. 2007). According 

to data from 2002, the construction industry accounted for 5.2% of all private industry employment but it 

was responsible for 15% of all private injury cost. All of this indicates that the construction industry is 

disproportionally costly in regards to accidents and fatalities. This translates to a yearly cost of 

approximately $11.5 billion (Waehrer et al. 2007). 

Accidents have shown to be caused either by unsafe human acts and/or an unsafe design that generates 

a physical hazard (Kartam 1997). Furthermore, several decades of construction safety research have 
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revealed that organizational and human factors, rather than technical failures, are the principal causes of 

accidents (Langford et al. 2000; Weick et al. 2008). The technological advances of the past two decades 

had allowed for the development of better equipment and training for construction workers, causing a 

remarkable decrease in recordable incidents. Nonetheless, fatalities have plateaued for the last decade 

and even increased in the past three years (U.S. Bureau of Labor Statistics 2015). This suggests that, in 

order to reduce the number of fatalities in the construction industry, it is imperative to focus on the human 

aspect of accident causation. 

Fatigue is a human factor identified by some as the main risk factor in construction (Chan 2011).  Fatigue 

is a leading cause of occupational injuries and fatalities, particularly in high-energy situations. Fatigue can 

be defined as a decreased ability to perform activities at the desired level due to lassitude or exhaustion of 

mental and/or physical strength (Gander et al. 2011; Hallowell 2010). When workers are fatigued they 

experience compromised alertness, judgement, reaction time (RT), mental acuity, physical strength, and 

the development of an uncooperative disposition ((Gillberg and Åkerstedt 1994; Kajtna et al. 2011; van der 

Linden et al. 2003; Lorist et al. 2005; Scott et al. 2006; Yaggie and Armstrong 2004). Such effects decrease 

a worker’s ability to complete their work safely (Dembe et al. 2005).  

As described by (Dawson et al. 2012), in order to properly manage fatigue it is essential to be able to detect 

early signs of fatigue among workers. This would allow for a correcting intervention before a worker reaches 

unsafe levels of fatigue. Several subjective questionnaires and technologies have been developed to 

assess fatigue. Nevertheless, none of these resources are suited for the construction industry. The 

developed questionnaires are subjective and most are very time consuming. On the other hand, most 

technologies that claim to assess fatigue have not been submitted to a rigorous validation process and their 

implementation in a construction site would be costly and troublesome (Techera et al. 2016a). 

Consequently, we offer the following research question: what objective variables can be measured at the 

beginning of a shift that can determine the level of fatigue of an individual? We hypothesize that a 

construction worker’s level of fatigue can be assessed by measuring simple activity variables at the 

beginning of the shift. Based on previous research a set of activity variables, potential predictors of fatigue, 

were defined. An objective tool to assess fatigue was chosen and a protocol was designed to test the 

aforementioned hypothesis. By means of regression analysis some activity variables were identified as 

predictors of fatigue.    

2. LITERATURE REVIEW 

2.1    Construction Work and Fatigue 

There are several characteristics of construction work that contribute to its hazardous nature.  Construction 

is constantly changing across the different stages of a project and sites are diverse and complex work 

environments.  These factors jeopardize the process of familiarization with the environment to the point 

where most possible hazards are recognized (Buchholz et al. 1996). Furthermore, construction work 

commonly requires working in awkward postures, in confined or dangerous spaces, lifting heavy equipment 

or performing forceful exertions (Schneider and Susi 1994). Given these challenges, it is essential that 

workers are fit for duty, vigilant, and mindful, which can be compromised by fatigue.   

There are two main reasons why fatigue compromises safety in an occupational environment (Spurgeon et 

al. 1997). First, fatigue diminishes the ability of an individual to perceive and react to new information. 

(Grandjean 1979; Johnston et al. 1998; Lorist et al. 2000; Reiner and Krupinski 2011). Second, fatigue 

diminishes the ability of an individual to perceive risk (Tixier et al. 2014). Consequently, under the effects 

of fatigue a construction worker becomes more vulnerable to the construction site’s hazardous environment.  

Several industries such as aviation, transportation, and mining have recognized and measured the impact 

of fatigue on safety and productivity and have developed approaches to mitigate its effects (Arnaldo et al. 

2016; Marcus and Rosekind 2016; Rosekind et al. 1995). Specifically, in construction, (Chan 2011) 

developed a seminal study that underlines the importance of addressing fatigue in this sector. In that study, 
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a group of 254 construction workers, 44 safety supervisors, and 23 managers were asked to identify the 

principal safety risk factors that affected their daily work. From a pool of 219 risk factors, fatigue was 

identified as the principal and most compromising risk factor for safety by 78% of the participants. Such 

evidence makes the development of effective ways to manage fatigue a priority in the construction industry.  

2.2    Fatigue Management 

Some researchers have developed theoretical models to manage fatigue. Such models receive the name 

of Fatigue Risk Management Systems (FRMS). A FRMS is “a scientifically based and flexible layered 

system of defenses to minimize the adverse effects of fatigue on workforce alertness, performance, and 

safety” (Gander et al. 2011). However, these FRMS can’t be properly implemented in the industry due to 

the lack of an easy, economic, and reliable way of assessing fatigue.   

2.2.1    Objective Assessment of Fatigue 

Fatigue has shown to provoke changes in several human physiological variables. Consequently, some 

disciplines have developed ways to objectively assess fatigue based on the change of such variables. First, 

researchers have measured Neuro-behavioral performance. This strategy evaluates changes in cognitive 

ability, mood, and physical capability due to a decay in the central or peripheral nervous system (Balkin et 

al. 2004). Second, Electroencephalography has been used to detect changes in amplitude, frequency or 

location of brain waves. Brain waves have shown to have a different behavior among fatigued and non-

fatigued individuals; especially theta (3.5-7Hz), alpha (8-13Hz) and beta (14-30Hz) (Lal et al. 2003; 

Okogbaa et al. 1994). Third, Pupilometry has been used to measure visually-guided saccadic velocity (SV), 

initial pupil diameter (PD), pupillary constriction latency (CL), and amplitude of pupil constriction (CA) 

(Goldich et al. 2010). Finally,  Oculometry has been used to measure the amplitude and frequency of eyelid 

movement that have also been correlated to fatigue levels (Wierwille et al. 1994). Based on these findings 

several products have been created to assess fatigue objectively. Some of these products include: the FIT-

2500, the Smart Cap, and the Optalert. 

Despite these technological and physiological advancements, the Psychomotor Vigilant Test (PVT) is the 

most reliable and properly validated tool to objectively assess fatigue. The PVT is based on the neuro-

behavioral decay that takes place under the effects of fatigue. The RT of an individual is a direct measure 

of his/her neuro-behavioral performance. Consequently, it offers an objective indirect measure of fatigue 

(Dinges and Powell 1985; Dorrian et al. 2005; Loh et al. 2004). Additionally, PVT is portable and easy to 

use while other physiological technologies are cumbersome and very expensive, making them infeasible 

for site evaluations. For this reason, we used the PVT to objectively assess fatigue among construction 

workers in our study.  

2.2.2 Potential Predictors of Fatigue 

In order to define the independent variables in our study, we reviewed literature for potential predictors of 

fatigue. Further, it is important to determine the variables that can be practically measured at the beginning 

of a shift that could influence the level of fatigue of an individual later in the shift. We started with the work 

of (Techera et al. 2016b) who meta-analyzed the causes and consequences of occupational fatigue. This 

study revealed nine main variables that influence the onset of fatigue: Sleep Deprivation, Incomplete 

Recovery, Workload, Overtime and Long Working Hours, Work Environment, Mental Exertion, Muscular 

Exertion, Social Environment, and Emotional Predisposition. We used these dimensions as potential 

activity variables (predictors) given that they were studied and validated broadly in laboratory settings.  

3.   METHODOLOGY 

The protocol for this study consisted of: (1) choosing a valid and reliable tool to perform a PVT; (2) Choosing 

a group of activity variables easily measurable at the beginning of a shift, which according to past research, 
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could be predictors of fatigue; (3) Measuring the variables and conducting tests with PVT on site to deliver 

a sufficient sample of construction workers, and (4) Testing the alternative hypothesis that the level of 

fatigue of a construction worker can be assessed by measuring simple activity variables at the beginning 

of the shift. This protocol was approved by the Institutional Review Board of the University of Colorado at 

Boulder.  

3.1    Fatigue Objective Assessment Tool 

The PVT-192 (Ambulatory Monitoring, Inc., Ardsley, et al., 1985), is the current “gold standard” to measure 

simple reaction time (RT). The principal challenge with using this technology is its extremely high cost, 

which makes it impractical for application in research or the industry.   

Recently, a new software “PC-PVT” was developed to perform simple RT measures among individuals. 

The principal objective of the developers of this software was to develop a PVT with the same reliability and 

functionality as the PVT-192 (Khitrov et al. 2013). The mentioned software has achieved these objectives 

offering a reliable, valid, more familiar and economic way of measuring simple RT. 

The functionality of the PC-PVT is analogous to that of the PVT-192. In order to participate in a PC-PVT a 

participant sits in front of a laptop computer with his/her dominant hand on the mouse. Before starting, the 

screen shows an instructional message and when the participant clicks the mouse, the test starts. The 

participant will observe a black screen and suddenly a stimulus will appear in the form of a red four-digit 

millisecond counter that stops the count once the participant clicks the mouse. The counter will display the 

RT of the individual for 500ms and then disappear. This sequence repeats at random intervals, between 2 

and 10 seconds. This test has been validated in a 5 min and a 10 min modality and we decided to implement 

the 5 min modality (Khitrov et al. 2013).  The PC-PVT stores the following relevant data: (1) time of the 

assessment; (2) number of minor lapses (RT> 500ms); (3) number of major lapses (RT>1000ms); (4) 

number of stimulus displayed; (4) minim RT; (5) maxim RT; (6) mean RT; and (7) median RT.  In this study 

we have selected the median RT as the dependent variable and most accurate objective measure of 

fatigue. The mean can more easily be affected by lapses in RT which are usually observed with the first 

stimulus due to the inexperience of the construction worker with the PC-PVT protocol. For more information 

regarding the PC-PVT please refer to (Khitrov et al. 2013).   

3.2    Construction Work and Fatigue 

Based on the variables presented by (Techera et al. 2016b) as principal contributors to occupational fatigue, 

we developed a sub set of activity variables that could be easily measured at the beginning of a shift. 

Accordingly, each variable is accompanied by a question that inquires about the specific value of such a 

variable. These questions were assembled in the so-called ‘Activity Questionnaire’ for its implementation 

in the data collecting proses. Table 1 summarizes the principal variables, the subset of activity variables 

and the questions.  

Table 1: Potential predictors of fatigue 

Causes of fatigue Activity Variables Activity Questionnaire 

Sleep Deprivation Sleep in 24h How many hours did you sleep during the past 24hs? 

Incomplete 
Recovery 

Rest in 24h 
 

Time off  

Besides sleeping, how many restful hours have you had 
in the past 24hs? 
How many hours have you had off since your last shift? 

Workload Consecutive shifts How many previous consecutive shifts have you worked? 

Overtime and LWH Previous shift  How long was your last shift? 

Work Environment Repetitive 
Vibration 

Noise 
Light 

Are you performing repetitive tasks at work?  
Are you exposed to vibration while working? 
Are you exposed to loud noises at work?  
Is the work environment well lit?            
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Temperature What is the approximate temperature in your work 
environment now? 

Mental Exertion Mental demand 1 
Mental demand 2 

Are you performing mentally demanding tasks at work? 
How mentally demanding is your job?   From 0 to 9 

Muscular Exertion Physical demand 1 
Physical demand 2 

Are you performing physically demanding tasks at work? 
How physically demanding is your job? From 0 to 9 

Social Environment Coworker 
Supervisor 

Do you have a good relationship with your coworkers? 
Do you have a good relationship with your supervisor? 

Self-Predisposition Start time 
Condition 

What is the start time of your shift today? 
Do you have a condition that doesn’t allow you to rest 
well? 

 

Additionally, demographic variables such as age, years of experience, position, and gender were included 

in the Activity Questionnaire accounting for a total of 22 variables.  

3.3    Data Collection Process 

Keeping in mind the practical application of the potential findings of this study, in the development of a 

fatigue assessment tool that will determine if a worker is fit for duty, the data collection process took place 

at to the beginning of the worker’s shift. In general, the researchers met with a group of 4 to 12 construction 

workers and after sharing a brief introduction to the purpose of the project, the data collection procedure 

was explained. Consecutively, the workers first filed out the Activity Questionnaire and then took part in the 

PC-PVT on a laptop that met all the requirements of the software. Participation was anonymous.  

3.4    Sample 

The research sample consisted of 160 men between the ages of 19 and 65 (age: µx= 37.0 y/o, S = 10.5 

yrs) with an average experience of 9.6 years (µx = 9.6 yrs.; S = 8.4 yrs.). A total of 40 worked in traditional 

commercial and civil construction and the other 120 worked in power transmission and distribution 

operations in the U.S. These two main types were characterized as Type 1 (traditional construction) and 

Type 2 (Linemen).  

3.5   Statistical Procedure 

The data obtained were either continuous (i.e. reaction time) or dichotomous (i.e. yes/no). Given the 

characteristics of our data, in order to test our hypothesis, a Multiple Linear Regression Analysis (MLRA) 

was performed. This method is generally used either to describe or to predict a relationship (Pedhazur 

1997). According to (Miller and Kunce 1973) a minimum of 10 data points per variable of interest may be 

sufficient to evaluate the predictive character of an independent variable. Other authors suggest a minimum 

of 30 data points per each variable of interest (Pedhazur and Schmelkin 2013). However, there is no 

hard rule regarding this number because it depends entirely on the characteristics of the data and the real 

correlation between the independent variables and the criterion measured.  

In our case, the following variables were not included in the regression given their null or nearly null 

variability: Gender, Coworkers, Light, Supervisor, and Condition. Additionally, the variable “experience” was 

excluded from the analysis given the lack of previous evidence of its influence on fatigue, and the 

dichotomous variable “Type” was included in the analysis. Consequently, the MLR analysis was performed 

on 16 activity variables with the Median RT of each participant as the dependent variable.  

The statistical analysis followed the following order: (1) study of collinearity, (2) Stepwise MLR, (3) Forward 

MLR, and (4) Backward MLR. With the results obtained from these procedures, a predictive model was 
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designed. After obtaining a predictive model all the underlying assumptions of MLR were validated. All 

statistical analyses were performed in SPSS Version 24.  

4. RESULTS 

4.1   Study of Collinearity 

No collinearity was found among the variables included in the model. 

4.2    Stepwise MLR and Forward MLR 

All 3 models (Stepwise, Forward, and Backward) of MLR were designed to admit a new variable as a 

predictor if the difference in explained variability was significant with a 95% significance level. Additionally, 

each variable that does not present a significant explained variability at a 90% significance level can be 

removed from the model. Table 2 shows a summary of the Stepwise model where the variables “Type” and 

“Sleep 24h” were found as significant predictors of changes in reaction time as measured by the PC-PVT. 

This model is able to predict 18.5% of the variability as measured by the adjusted R2. 

Table 2: Stepwise Model Summary 

Predictive 
Variables 

 
R2 

Adjusted 
R2 

Std. Error of 
the Estimate 

 
df 

F Statistic  
Change 

 
p-value 

Type 0.155 0.150 39.378 158 29.039 0.000 
Type + Sleep 24h 0.197 0.187 38.507 157 8.229 0.005 

4.3    Backward MLR 

The Backward MLR analysis selected one more variable as a predictor: “Physical 1”, however, this variable 

won’t be considered in the overall model because it doesn’t contribute significantly to a change in 

predictability (coefficient change t-test, p-value: 0.095).  

4.4    Model  

The MLR analysis has given place to the model presented in Table 3 as the best predictor of RT changes 

as measured by the PC-PVT. Table 3 represents the coefficients of the regression equation (Eq. 1) together 

with the corresponding standard error.  

Table 3: Model Coefficients 

Predictive 
Variables 

Unstandardized 
Bi 

Standard 
Error 

Standardized 
Bi  

 
t 

Significance 
p-value 

Constant 199.645 16.163  12.352 0.000 
Type 

Sleep24h 
38.854 
5.395 

7.030 
1.881 

0.395 
0.205 

5.527 
2.869 

0.000 
0.005 

4.4.1 Regression equation (Eq. 1):  

[1] 𝒚 = 𝟏𝟗𝟗. 𝟔 + 𝟑𝟖. 𝟗𝒙𝟏 + 𝟓. 𝟒𝒙𝟐 + 𝑬   Were x1 = Type (1 or 2); x2 = Sleep 24h; E = error  

4.4.2    Residual Statistics:  

Table 4 shows some descriptive statistics of the residuals together with Mahalanobi’s distance, Cook’s 

distance and centered Leverage Values that will be useful to assess outliers, high leverage, and influence. 
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Table 4: Residual Statistics 
  

Minimum Maximum Mean Std. Deviation N 

Residual -97.512 125.342 0.000 38.264 160 
Std. Residual -2.532 3.255 0.000 0.994 160 
Stud. Deleted Residual -2.615 3.379 0.001 1.013 160 
Mahal. Distance 0.331 18.871 1.988 2.531 160 
Cook's Distance 0.000 0.241 0.007 0.022 160 
Centered Leverage Value 0.002 0.119 0.013 0.016 160 

4.5    Model Validation 

4.5.1 Linearity, Homoscedasticity, Normality, and Independence 

Multiple Linear Regression relies on four assumptions over the residuals which must be tested for 

validation.  The first assumption is “Linearity of the relationship”. The second assumption is 

“Homoscedasticity” which evaluates if the spread of the residuals is equal along the predicted variables. 

The third assumption is normality of the residuals, and the last assumption is the independence of errors.  

A good way to assess linearity is by looking at a scatterplot of the residuals along the predicted values. The 

assessment consists in plotting the regression line together with another line that is sensitive to the local 

nature of the data. This latter type of line receives the name of “lowess” line which stands for locally, 

weighted scatterplot smoother. If the lowess line follows the fitted line closely then the assumption of 

linearity is met. This is the case with our model and it can be observed in Figure 1 

 

Figure 1 Test for Linearity 

The Homoscedasticity of conditional residual distributions assumption states that the variance of the 

residuals is equal along the predictors. Consequently, we can also use Figure 1 to test this assumption. 

Figure 1 shows mainly two groups of points (type 1 and type 2 workers) equally vertically-distributed along 

the horizontal axis. Therefore, the amount of variability is equal along the predicted values.  
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The normality of the residuals can be easily assessed from looking at the histograms of the residuals and 

it can also be tested by looking at the skewness and kurtosis of the residuals. These observations were 

made and the residuals showed to be normal.  

Regarding Independence, the participants didn’t follow a specific time sequence and therefore the residuals 

are independent from one another and of the values of the predictor variables.  

4.5.2    Outliers, Leverage, and Influence 

Outliers are extreme values in the vertical direction. To assess the existence of outliers in the residuals we 

can look at the studentized deleted residual in Table 4. Given the degrees of freedom of our model and 

after applying Bonferroni correction, we conclude that no value should be greater than 3.68. Given that the 

maximum studentized deleted residual is 3.38 there are no outliers in the data.  

Leverage refers to outliers in the horizontal axis.  The presence of these outliers can be detected by looking 

at the Mahalanobi’s distance in Table 4. We can observe that the maximum value is outside of the range 

divided by 3 standard deviations from the mean. Consequently, there is at least one outlier in the horizontal 

axis. However, Cook’s distance is lower than 1, indicating that such outliers don’t jeopardize the 

predictability of the model. 

5. Discussion 

This study constitutes the first effort to test the hypothesis that activity variables can predict changes in the 

level of fatigue of a construction worker. The alternative hypothesis has shown to be significant and an 

individual’s level of fatigue, as measured by the PC-PVT, has shown to be correlated to at least 2 variables: 

(1) the type of worker (traditional construction or electrical worker) and the amount of sleep obtained in the 

previous 24 hours.  These results agree with those obtained by (Dawson and McCulloch 2005) who stated 

that “managing fatigue is about sleeping”.   

The model created in this study shouldn’t be applied to predict the level of fatigue of construction workers 

given the low explained variability of the model. However, these findings underline two important factors: 

(1) even within construction, the type of work performed strongly correlated to the level of fatigue 

experienced by individuals; (2) in fatigue prediction, the amount of sleep obtained during the past 24h is 

the main predictive activity variable.   

Given the limited sample size, additional variables such as trade could not be selected as potential 

predictors. However, given the results obtained in this study, in which the type of worker was found to be 

the principal predictor of fatigue, the influence of trade in fatigue should be promptly addressed. Future 

research with a larger sample size could reveal new predictors, thus explaining more of the variability in the 

data. This could potentially give place to a fatigue predictive model. 
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