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Abstract: An engineering analysis or design is seldom completed without conducting a proper sensitivity 
analysis. Sensitivity or what-if analysis is the assessment of the consequences of changes in input factors 
and/or model parameters, not taking into account information on the probability of these changes. These 
changes may be due to uncertainty in the input parameters or unforeseen deviations from specifications. 
In practice, changing one factor or one parameter at a time is perhaps the most popular and well-known 
method for conducting sensitivity analysis. This approach is advocated and described in textbooks on 
engineering design as well as engineering economics. The advantage of this method is that it is easy to 
apply and the results seem easy to understand. However, the one-factor-at-a-time or OFAT method is 
known to be inefficient and in some cases lead to wrong results. In this paper, a sensitivity analysis 
approach based on statistical design of experiments (DOE) is introduced using examples from structural 
and geotechnical engineering, and from engineering economics. This paper will show that the DOE 
approach is easy to apply, efficient, and to interpret. The approach is in fact a combined sensitivity and 
scenario analysis. It will also be shown that the DOE approach provides better information for decision 
making than the OFAT and stochastic risk analysis approaches. 
 

1.0 INTRODUCTION 

An engineering design or analysis is seldom completed without conducting some sort of sensitivity 
analysis (SA). Sensitivity or what-if analysis is the assessment of the consequences of changes in inputs 
and model parameters, not taking into account information on the probability of these changes. In SA of 
computer models, it aims to identify the key parameters that affect model performance and it plays 
important roles in model parameterization, calibration, optimization, and uncertainty quantification (Song 
et al, 2015). Risk analysis on the other hand tries to assess the same effects as SA does, but takes into 
account the (joint) probability distribution of the input parameters. However, the reliability of the results 
depends strongly on the knowledge of the probability distribution of the input values. Furthermore, the 
impact of each parameter and their possible interactions are not directly known without further analysis.  
That is, a probability of failure can be obtained but not which parameters are important. In practice, 
changing one factor or one parameter at a time or the OFAT method is practically the standard method 
for conducting sensitivity analysis. This approach has been advocated and commonly described in 
textbooks on engineering design (e.g. Dieter, 1986). It is also the approach taken by most engineering 
students when asked to do a SA. The advantage of this method is that it is easy to apply and the results 
seem easy to understand. However, the OFAT method is known to be inefficient and ineffective and in 
some cases can lead to disastrous and wrong results. Only the effect of each factor or parameter can be 
studied but not their interactions with each other. These interactions can be more significant than the 
individual effects (Montgomery and Myers, 2009; Lye, 2002). That is, the effect of a parameter may 
depend on the level of another parameter. Another form of SA is scenario analysis. A scenario analysis 
uses a combination of simultaneous changes in input parameters that have been deemed to be possible 
scenarios in future. Usually an optimistic or best case, a pessimistic or worst case, and the base case 
scenario are considered. With many input parameters, the number or possible scenarios increases 
rapidly, and the scenarios actually used are selected somewhat arbitrarily. The resulting information is 
usually insufficient to meet the needs of decision makers (Van Groenendaal and Kleijnen, 1997).  
 
In this paper, the use of statistical DOE methodology for SA will be illustrated using examples from 
structural and geotechnical engineering, and an example from engineering economics. The method is 
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one of many methods for SA. Other methods of SA, particularly for computer models have been reviewed 
by Iman and Helton (1988) and more recently by Song et al (2015). The DOE approach is highlighted in 
this paper because of its ease of computation, direct interpretation, and its wide applicability for many 
engineering design and analysis problems. The first example considers a reinforced concrete beam 
design problem involving four parameters and the interest is in the moment of resistance.  The second 
example is a slope stability problem with five parameters and the interest is in the factor of safety. The 
final example is in engineering economics involving seven parameters and the interest is in the net 
present value. The software Design-Expert 9.0 by Statease, Inc., a software for design and analysis of 
experiments, will be used in this paper. Other software such as Minitab® or spreadsheet like Excel® 
could also be used.  
 
In the next section, the basic idea of DOE and what it can achieve will be described. This is followed by 
the application of factorial design and fractional factorial design methodologies for the three different 
examples described above. The paper ends with a discussion of further applications of DOE 
methodologies in civil engineering and conclusions. 
 
 
2.0     DESIGN OF EXPERIMENTS (DOE) 
 
Sensitivity analysis (SA) is basically based on the same underlying principles as experimental design and 
much of the terminology used in SA has originated from an experimental design or DOE setting 
(Campolongo and Saltelli, 2000). Experimentation in various sub-disciplines of civil engineering may be 
computer simulations, laboratory or field experiments. As with most engineering problems, engineers are 
often faced with limited time and budget. Hence efficient experimentation that gains as much information 
as possible is critical. In engineering, one often-used approach is the best-guess (with engineering 
judgment) approach. Another strategy of experimentation that is prevalent in practice is the one-factor-at-
a-time or OFAT approach (also known as ceteris paribus). The OFAT method was once considered as 
the standard, systematic, and accepted method of scientific experimentation. Both of these methods have 
been shown to be inefficient and in fact can be disastrous (Czitrom, 1999; Lye, 2002; Montgomery, 2005). 
These methods have been outdated since in the early 1920s when Ronald A. Fisher invented methods of 
experimentation based on factorial designs. These approaches provide methods for selecting the 
combinations of factor values to be employed that will provide the most information on the input-output 
relationship in the presence of variation or uncertainty. These methods are based on elementary 
statistical principles and have wide applicability (Campolongo and Saltelli, 2000). These were further 
developed to include fractional factorial designs, orthogonal arrays, and response surface methodology. 
These statistical methods are now simply called design of experiment methods or DOE methods. 
Basically, DOE is a methodology for systematically applying statistics to experimentation. DOE lets 
experimenters develop a mathematical model that predicts how input variables interact to create output 
variables or responses in a process or system. The use of statistics is important in DOE but not absolutely 
necessary. In general, by using DOE, we can learn about the process being investigated, screen 
important factors, determine whether factors interact, build a mathematical model for prediction, and 
optimize the response(s) if required (Montgomery, 2009). In this paper, the term factors and parameters 
or variables will be used interchangeably. 
 
It has been recognized that the factorial-based DOE is the correct and the most efficient method of doing 
multi-factored experiments; they allow a large number of factors to be investigated with few experimental 
runs. Two-level factorial designs in which each of the factors has exactly two levels are among the most 
commonly used in industrial experiments. A two-level design having k factors requires a minimum of 2k 
test runs to accommodate all possible combinations of the factor levels, i.e. a full factorial. A full factorial 
design with five factors, for example, would require 25runs or 32 runs. To save on runs, only a fraction of 
all the possible combinations can be performed using fractional factorial designs symbolized as “2k-p”, 
where k refers to the number of factors and p is the fraction. While cutting runs saves on costs, it reduces 
the ability of the design to resolve all possible effects, specifically the higher order interactions. A 
measure of how well the design can resolve the interactions is called the resolution of the design. Ideally, 
the higher the resolution, the better will be the design. It is recommended that resolution V and above is 
best as all main effects and two-factor interactions can be estimated accurately. Nowadays, there are 
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also novel highly efficient resolution V designs that are able to handle experiments with up to 50 factors 
(Oehlert and Whitcomb, 2002) with much fewer runs than the traditional fractional factorial designs. 
Details of factorial and fractional factorial designs can be found in Montgomery (2005), among others.  
 
 
3.0     APPLICATION EXAMPLES 
 
The first example shows the use of a two-level factorial design for a four- parameter problem. The second 
example uses a fractional factorial design for the five-parameter problem, and the third example shows 
the use of a minimum run computer generated fractional factorial design for a seven-parameter problem. 
 
3.1   Reinforced concrete beam: sensitivity of the moment of resistance to 4 design parameters 
 
This design problem involves a reinforced concrete beam section with a nominal size of 400 mm width by 
800 mm depth. The area of steel is 3,500 mm2 and concrete strength is 30 MPa. The clear cover for the 
steel is assumed to be about 40 mm. The cross-section is shown in Figure 1. It will be assumed that there 
are uncertainties in the width b, depth d, concrete strength f’c, and cover c due to quality control issues at 
the site. According to CSA A23.3-04 (2004), the moment of resistance of an under-reinforced concrete 
section (Figure 1) is calculated as: 

[1]         
ρφ 

= ρφ − ′α φ 

s y 2
ρ s y

1 c c

φ
M φ 1 bd

2 φ
 

Where: ρ is the reinforcement ratio, ρ = As/bd, φc and φs are material resistance factors and are equal to 
0.65 and 0.85 respectively.  The yield strength if the steel is fy and α1 is ratio of average stress in 
rectangular compression block to the specified concrete strength.  In order to calculate the nominal 
strength of the section, the material resistance factors φc and φs are set to be equal to 1. 
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Figure 1:  Cross-section of the RC beam 

 
The ranges of the four design parameters are given in Table 1. The area of steel is assumed to be fixed. 
The sensitivity of the calculated moment of resistance (Mr) of the beam due to these uncertainties is 
desired.  
 
Table 1:  Parameters and ranges for RC beam problem 
Parameter Units Name Low  High 
b mm Width 380 420 
d mm Depth 760 840 
f’c MPa Concrete strength 27 33 
c mm Cover 30 50 

 
A simple 2-level factorial design will be used for this four-parameter problem. A 24 design requires 16 run 
combinations – that is all combinations of the 4 parameters. The combinations and the resulting moment 
of resistance (in kN-m) are shown in Table 2.   
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An effective way to determine the significance of the effect of each parameter on the response (Mr) is by 
means of a half-normal probability plot (Montgomery, 2009).  Effects that are random are expected to be 
normally distributed and hence will plot along a straight line on a probability plot. Non-random effects will 
fall off the straight line and are considered to be significant effects. In our case, these will be the most 
sensitive parameters. The mechanics of effects calculations and doing the plot are well covered in 
Montgomery (2009) among others. Figure 2 shows the half-normal plot of the 15 effects calculated from 
the 16-run combination.  
 
Table 2: Run combinations from a 24 design for the concrete beam problem 

Run B d f'c c Mr 
1 380 840 27 30 1058 
2 380 760 33 30 966 
3 420 760 33 50 976 
4 380 840 33 50 1078 
5 380 760 27 50 946 
6 380 840 27 50 1058 
7 420 840 27 30 1069 
8 420 840 33 30 1088 
9 380 760 33 50 966 
10 420 840 27 50 1069 
11 420 840 33 50 1088 
12 380 760 27 30 946 
13 420 760 27 30 957 
14 420 760 33 30 976 
15 380 840 33 30 1078 
16 420 760 27 50 957 

 

  
Figure 2:  Half-normal plot of effects for the concrete beam problem. 

 
Figure 2 shows that only the depth (d) is the most significant or sensitive parameter followed by the 
concrete strength (f’c), and then the width (b). Surprisingly, the Mr is not sensitive to the cover (c) for the 
ranges considered. A prediction equation in terms of the significant effects (parameters) can also be 
developed using regression analysis. The prediction can be written in terms of coded or actual factors. 
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Coded factors means that the parameter used has been scaled to -1 to +1, while the actual factors will be 
in terms of the actual units used. For interpretation of the coefficients, use of coded factors is preferred of 
their direct correspondence to the sensitivity of the parameter. For the concrete beam problem, the 
moment of resistance can be predicted within the range of the parameters used using: 
 
[2] Mr = 1017.32 + 5.13 A + 56.0 B + 9.70 C  
 
Where: A = coded factor of depth d, B = coded factor of concrete strength f’c, and C = coded factor of 
width b.  The adjusted R2 of the regression equation is 0.999 which is an excellent fit. The regression 
equation can also be written in terms of the actual factors as: 
 
[3]   Mr = -302.34 + 0.257 b + 1.400 d + 3.233 f’c 
 
Where: b, d, and f’c have been defined earlier.  
 
As can be seen, Table 2 and equation [2] or [3] can be used to determine the combination that would give 
the best and worst case scenario. Hence using DOE is doing sensitive and scenario analyses in one go.  
 
 
3.2   Slope stability problem: sensitivity of the factor of safety to 5 soil parameters 
 
Next a 5-parameter design problem is considered. A half-fraction resolution V factorial design with 16 run 
combinations will be used. The geometry of the slope used in this example is shown in Figure 3. A D-m 
high river bank slope is chosen which has an angle of β° with the horizontal. The ground surface is 
considered flat. It is assumed that the slope has a uniform layer of soil above the strong base layer. 
Typical soil properties such as unit weight (γ), cohesion (c) and angle of internal friction (ϕ) is considered. 
The groundwater table is shown by the dashed line. For simplicity the ground water table is kept constant 
at EFKH throughout this study. The failure of this slope could occur under different conditions because of 
the variation of slope geometry (D, β) and soil parameters (γ, c, ϕ). In this study, to check the effect of 
these five parameters (D, β, γ, c, ϕ) on slope stability, combinations of different factors are considered 
using the low and high value of each factor as stated in Table 3. In other words, this study investigates 
the sensitivity of the factors that have the greatest effect on slope failure, and whether is there any 
interaction among these factors. Morgenstern-Price (limit equilibrium) method (Das, 2010) available in 
Slope/W (2007) software by GEOSLOPE International Ltd is used to determine the Factor of Safety (FS) 
of the slope.  
 
 
 
 
 
   
 
 
  
 

Figure 3: Geometry of the slope used in example problem 
 
Table 3: Parameters and ranges for slope stability analysis 
Parameter Units Name Low value High value 
c kPa Cohesion 30 40 
ϕ degrees Friction angle 18 28 
γ kN/m3 Unit weight 15 20 
D m Height of slope 10 15 
β degrees Slope angle 24 32 
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The Morgenstern-Price (M-P) method is a general method of slices to determine the Factor of Safety (FS) 
developed on the basis of limit equilibrium method. This method considers both shear and normal 
interslice forces, and satisfies both moment and force equilibrium assuming various user-specified inter-
slice force functions such as constant, half-sine, trapezoidal function (Slope/W, 2007). The 16-run 
combinations from a Resolution V 25-1 fractional factorial design is given in Table 4.  
 
The corresponding response, the FS, is also shown in Table 4. For a 16-run Resolution V fractional 
factorial design, 15 effects can be estimated without ambiguity.  Significant effects can be picked out 
using the half-normal plot as discussed in the first example or can be formally tested using analysis of 
variance or ANOVA. From the half-normal plot shown in Figure 4, it is clear that the parameters that the 
FS is most sensitive to is the soil friction angle φ and depth D, followed by the cohesion c, then unit weight 
γ and slope b. For the range of parameters used, there is no interaction among the five parameters.  
 
Table 4: Run combinations of a 25-1 design for the slope stability problem.  

Run c φ γ D b FS 
1 30 18 15 10 24 2.019 
2 40 18 15 10 32 2.349 
3 30 28 15 10 32 2.296 
4 40 28 15 10 24 2.915 
5 30 18 20 10 32 1.681 
6 40 18 20 10 24 2.182 
7 30 28 20 10 24 2.351 
8 40 28 20 10 32 2.442 
9 30 18 15 15 32 1.492 
10 40 18 15 15 24 1.912 
11 30 28 15 15 24 2.067 
12 40 28 15 15 32 2.178 
13 30 18 20 15 24 1.516 
14 40 18 20 15 32 1.562 
15 30 28 20 15 32 1.803 
16 40 28 20 15 24 2.257 

 
A prediction equation can be obtained for the FS as a function of the five significant effects in terms of 
coded factors: 
 
[4]   FS = 2.06 + 0.16 A + 0.22 B – 0.09 C -0.22 D – 0.088 E. 
 
In [4], A is the coded factor of cohesion, B is the coded factor of φ, C is the coded factor of unit weight, D 
is the coded factor of depth, and E is the coded factor of the slope angle. A coded factor has a range of -1 
to +1.  
The prediction equation developed fulfilled the assumptions of regression with an adjusted R2 of 0.967 
which is a reasonably good fit. In other words, the fairly complex calculations of the FS can be simply 
reduced to equation [4] which shows the sensitivity of each parameter on the FS directly. From Table 4 
and equation [4], one can easily see the most critical combinations that lead to lower FS. Clearly, to 
increase FS, one must reduce the uncertainty of φ and D in particular.  
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Figure 4: Half-normal plot of effects for the slope stability problem. 

 
3.3   Engineering economic analysis – sensitivity of the NPV to 7 parameters 
 
According to Van Groenendaal and Kleijnen (1997) less information is required when using fractional 
factorial designs for sensitivity analysis in an economic analysis. The sensitivity analysis is more robust, 
and leads to results that better satisfy the information needs of decision makers compared to Monte Carlo 
risk analysis. In this example, the sensitivity of seven economic parameters on the NPV or net present 
value, a commonly used criterion for large investment projects.  Consider a corporation that is considering 
replacing its current steam plant with a 5-megawatt cogeneration plant that will produce both steam and 
electric power for operations. The new plant will use waste wood as a source of fuel, which will eliminate 
the need to purchase electric power from the public utility. The estimated initial cost (I) for the equipment 
and installation is $3M, but there is some uncertainty about this estimate. The plant is expected to last 20 
years with no salvage value. In addition to the initial cost, the equipment will require an overhaul with an 
estimated cost (OC) of $35,000 at the end of the 4th, 8th, 12th, and 16th year. In addition, the cooling tower 
will also need an overhaul  at the end of the 10th year at an estimated cost (CT) of $17,000. Operation 
and maintenance cost for the new plant is expected to be higher than the current system and this 
incremental cost (OM) has been estimated at $65,000 annually. The incremental annual cost for the wood 
fuel (W) is $375,000 but this will obviate the need to purchase 40 MW-hours of electricity per year at 
about $0.025 per kW-h (EC). The discount rate (i) is estimated to be about 12%. The NPV is thus a 
function of seven economic parameters. That is: 
 
[5]   NPV = f(I, OC, CT, OM, W, EC, i)  
 
Where: NPV = net present value, I = initial cost, OC = overhaul cost, CT = cooling tower overhaul cost, 
OM = operation and maintenance cost, W = wood fuel cost, EC = electricity cost, and i = discount rate. 
The NPV is calculated using: 
 
[6]  NPV = -I – (OM + W + EC *4MW) (P/A, i, 20) – CT(P/F,i,10) – OC [P/F,i,4) + (P/F,i,8)  
  + (P/F,i,12) + (P/F,i,16)] 
 
Where: (P/A,i,n) and (P/F,i,n) are standard compound interest factors with discount rate of i and n 
compounding periods. The minimum run resolution V design with 30 run combinations is shown in Table 
5 together with the NPV for each combination.  
 
The half normal plot of the significant effects of each factor or parameter and their interaction is shown in 
Figure5. It can be seen that the most significant factor affecting NPV is the cost of electricity (EC). A 
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higher cost of electricity translate to more savings and hence a higher NPV. The discount rate is the next 
most significant factor. It has a negative effect on the NPV. A higher discount rate would lead to a 
reduction in the NPV. This is followed by the initial cost, wood fuel cost, and there is also an interaction 
effect between the cost of electricity and discount rate. This means that the effect of the discount rate on 
the NPV depends on the level of the electricity cost. Figure 6 shows this interaction effect. NPV is not 
sensitive at all to operation and maintenance, and plant overhaul costs for the ranges used.  
 
Table 5:  Run combinations of minimum run resolution V design with 7 parameters. 
Run Initial Cost OM WC EC i CT OC NPV 

1 $2,700,000 $58,500 $337,500 $0.03 10% $15,300 $38,500 $4,074,104 

2 $2,700,000 $71,500 $337,500 $0.02 14% $15,300 $31,500 -$154,585 

3 $2,700,000 $71,500 $412,500 $0.03 10% $15,300 $38,500 $3,324,910 

4 $2,700,000 $58,500 $412,500 $0.02 10% $15,300 $38,500 $30,161 

5 $3,300,000 $71,500 $412,500 $0.03 14% $18,700 $38,500 $1,388,103 

6 $2,700,000 $58,500 $337,500 $0.02 14% $18,700 $31,500 -$69,402 

7 $3,300,000 $71,500 $337,500 $0.02 10% $18,700 $31,500 -$31,508 

8 $2,700,000 $71,500 $337,500 $0.03 14% $18,700 $31,500 $2,493,750 

9 $3,300,000 $58,500 $412,500 $0.02 14% $15,300 $31,500 -$1,165,219 

10 $3,300,000 $71,500 $337,500 $0.03 10% $18,700 $38,500 $3,362,117 

11 $2,700,000 $58,500 $337,500 $0.03 10% $18,700 $31,500 $4,084,593 

12 $2,700,000 $58,500 $337,500 $0.03 14% $18,700 $38,500 $2,570,939 

13 $2,700,000 $58,500 $412,500 $0.03 14% $15,300 $31,500 $2,084,033 

14 $3,300,000 $58,500 $337,500 $0.03 14% $15,300 $31,500 $1,980,768 

15 $3,300,000 $71,500 $337,500 $0.03 10% $15,300 $31,500 $3,375,228 

16 $2,700,000 $71,500 $412,500 $0.02 10% $15,300 $31,500 -$68,715 

17 $3,300,000 $71,500 $337,500 $0.02 14% $18,700 $38,500 -$764,414 

18 $3,300,000 $71,500 $412,500 $0.02 10% $18,700 $38,500 -$681,826 

19 $2,700,000 $71,500 $412,500 $0.02 14% $18,700 $31,500 -$652,237 

20 $3,300,000 $71,500 $412,500 $0.03 14% $15,300 $31,500 $1,397,932 

21 $3,300,000 $58,500 $337,500 $0.02 14% $15,300 $38,500 -$677,396 

22 $3,300,000 $58,500 $337,500 $0.02 10% $18,700 $38,500 $67,368 

23 $3,300,000 $58,500 $412,500 $0.03 14% $18,700 $31,500 $1,483,116 

24 $2,700,000 $58,500 $412,500 $0.02 10% $18,700 $31,500 $40,651 

25 $3,300,000 $58,500 $412,500 $0.03 10% $15,300 $31,500 $2,847,387 

26 $2,700,000 $71,500 $412,500 $0.02 14% $15,300 $38,500 -$660,232 

27 $3,300,000 $71,500 $337,500 $0.02 10% $15,300 $38,500 -$41,998 

28 $2,700,000 $58,500 $412,500 $0.03 10% $18,700 $38,500 $3,434,276 

29 $3,300,000 $58,500 $412,500 $0.03 14% $15,300 $38,500 $1,475,121 

30 $2,700,000 $71,500 $337,500 $0.02 10% $18,700 $38,500 $556,691 
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Figure 5: Half normal plot of effects for the engineering economics problem 

 

 
Figure 6: Interaction plot of discount rate (i) and electricity cost (EC). 

 
From the above analysis, a regression equation relating the NPV to the significant effects in terms of 
coded factors is: 
 
[7] NPV = 1182.73 – 296.59 A – 280.17 C + 1527.96 D – 518.19 E – 189.10 DE 
 
Where: NPV is the net present value, A is the coded factor of the initial investment, C is coded factor of  
the wood fuel cost, D is the coded factor of the electricity cost, E is the coded factor of the discount rate, 
and DE is the interaction effect between the cost of electricity and the discount rate.  The adjusted R2 of 
the regression equation is 0.999.  Note that the interaction of the two parameters would not be estimable 
if one has used a one factor at a time approach.  
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4.0    CONCLUSIONS 
 
This paper has used three examples from civil engineering to illustrate how the simple DOE approach 
using two-level factorial and fractional factorial designs can be used for conducting sensitivity analysis. 
The approach is quite straightforward and the results obtained are directly interpretable. The importance 
of each parameter and their possible interactions on the response are all quantified and a prediction 
equation is obtained as a by-product of the analysis. The approach is in fact a combined sensitivity and 
scenario analysis. The method also does not need excessive information or computation time compared 
to Monte Carlo methods or methods that require calculus. While the DOE approach is easy to apply and 
has many advantages, it is unfortunate that most engineers are still not familiar with them and they still 
rely on the one factor at a time approach. Lye (2012) has argued that with the current engineering 
curriculum in Canadian schools, if DOE is not taught, then it would be impossible to meet the new CEAB 
graduate attributes requirements.   
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