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Abstract: Travel time is a representative index of travel systems. Several models and tools have been 
used to predict and estimate travel time, but few of them relate current speed and flow data with future 
travel time prediction. Differently, this paper combines the time template prediction and corridor travel time 
estimation together, based on the current point-level speed and volume data, to address the gap in the 
literature. Firstly, to predict the time stamp and speed of vehicles arriving at each loop detector, the 
METANET macroscopic traffic model is used for traffic state simulation. METANET takes real-time traffic 
measurements and simulates traffic state variables in a future time period. Then, segment-level travel time 
equals the travel time that is derived from the predicted speeds at the time of entering the section. From 
the piece-wise linear speed–based method (PLSB), the method assumes that speeds are changing linearly, 
and instantaneous travel time can be calculated. Based on the concept of “first in, first out (FIFO),” this 
departure time would be the starting time stamp of the next section. The speeds of vehicles are not fixed 
but instead dynamic, as they change from one moment to the next, so the time of sections would vary. 
When each section’s time boundaries are defined, the corridor-level travel time can be finally formed from 
adjacent sections by constructing imaginary vehicle trajectories. This paper tests, validates and links two 
practical models by using real-time loop detector data on Whitemud Drive in Edmonton, Canada. 
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1. INTRODUCTION 

Travel time is considered a representative index of travel systems. Over time, several different models have 
been applied in travel time estimation. Earlier studies have mainly focused on algorithms based on historical 
speed and volume data, which were used in previous travel time characteristics estimation. For example, 
Wong and Sussman (1973) modeled algorithm parameters according to observed travel condition data to 
calculate travel time, while Chang and Mahmassani (1987) predicted travel time using a dynamic volume 
model based on changing driving patterns. However, the data sources of these models, such as probe 
vehicles, still have deficiencies. In contrast, the loop detector, a more recent development, serves as a 
comparatively efficient and accurate surveillance instrument that has improved the convenience and 
accuracy of data collection. The loop detector records information, such as speed, capacity, up and down 
volume, etc., in a rapid and efficient manner, and the captured data can reflect traffic conditions in real-time 
(Chen et al. 2007). 
 
However, models based on historical data can hardly satisfy travel time estimation now, in the “Age of the 
Automobile,” as vehicle information and traffic conditions are much more dynamic than traditional driving 
patterns. Thus, predicting future patterns has become a more significant aspect in transportation research 
today. But, few studies in the literature focus on this aspect. Therefore, this study fuses the METANET 
model and the piece-wise linear speed–based (PLSB) method together to make a travel time prediction 
and estimation model.  
 
The METANET-based dynamic traffic model, proposed for traffic flow estimation and control, can be seen 
as a macroscopic model. And because the model structure can be altered by adjusting parameter values, 
the model is flexible in how it corresponds to real-time traffic flow characteristics, and the accuracy can be 
demonstrated on a practical level.  
 
A matrix of time stamps for speed or volume can be assigned; they are real-time and point-based ones, but 
travel time is a corridor-level index. Therefore, the PLSB method is appropriate (van Lint 2003), as it 
assumes that speeds vary linearly as a function of the distance between an upstream and downstream 
detector; in other words, speeds are changed linearly among travel sections. Hence, the study segment, 
which is from 122 Street at Whitemud Drive to 170 Street at Whitemud Drive, would be divided into several 
sections. Meanwhile, a random afternoon peak period (January 16, 2015) with dynamic speed is selected 
to compare predicted speed with the ground truth speed. 
 
The objectives of this paper are the following: 
 
a) To build a METANET-based dynamic model to predict the travel speed and volume per time interval 
under present traffic conditions, and improve its accuracy. 
 
b) To apply the PLSB model to determine the assumed vehicle trajectory and calculate the travel time at 
the corridor level. 
 
The remainder of this paper is divided into three parts. The first discusses speed and volume estimation, 
and the second considers how to link them together. And finally, a comparison of estimated travel time with 
the ground truth travel time is performed. 

2. TRAVEL TIME ESTIMATION 

2.1 The METANET-Based Dynamic Traffic Model 

A METANET-based dynamic traffic model (Messmer and Papageorgiou 1990) was used to perform traffic 
state prediction. Below is a brief explanation of the prediction model. To apply the dynamic traffic model, 

the freeway corridor was divided into several segments ( i =1, 2... N ) of length iL
 and lanes i


 (as shown 

in Fig.1). The evolutions of traffic density 
( )i k

 in vehicles per kilometer per lane (veh/km/ln) and traffic 
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speed 
( )iv k

 in kilometers per hour (km/h) at each time index t  (where, t kT , T =the discrete time step, k

= the time step presently in the calculation) were calculated by equations 1 and 2 (Spiliopoulou and Kopelias 
2014): 
 

[1]  
1 1( 1) = ( )+ ( ( )- ( )+ ( )- ( ))i ii i i i ii-

i i

T
k+ k q k q k r k s k

L
   

 

  
 
Where, 
q = boundary flow between segments in vehicles per hour (veh/h); 

R = on-ramp meter rates; 
S = off-ramp flow. 
 

[2] 
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Where,

 
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        

    
 = reaction term parameter in hours (h); 
 = anticipation parameter (km2 per hour, km2/h); 
 = positive constant (veh/km/ln)—these are global parameters that are calibrated from measured data. 

 

 
 

Figure 1: Segmentation of freeway links 
 

2.2 The Piece-Wise Linear Speed–Based Trajectory Method  

The piece-wise linear speed–based (PLSB) trajectory method can estimate travel time based on corridor 
level, assuming that the vehicle’s traveling speed is dynamic. In the model, the time when a vehicle is 
passing over space [x0, x1] is defined as the time needed for a vehicle i to travel across particular section 
k. The speed v(x, t) depicts the steepness of its trajectory. In figure 2, the PLSB assumes that the steepness 
is a linear changing line. Thus, during calculation, compared to travel time estimation that assumes a 
constant traveling speed, the PLSB method can decrease the bias resulting from average speed calculation. 
In addition, in this paper, the estimation mainly focused on the position of t in the time axis. And in the 
adjacent section, the observed space (x0 and x1) and time (t0ikp and t*ikp) can be confirmed.  
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Figure 2: Trajectory through space-time cells (van Lint 2003) 

 

As the number of lanes on the road will change in different sections, equation 3 is used to take into account 
the speed of each lane and calculate an average speed. This explains the average speed used in equations 

4 and 5 (van Lint 2003). 

[3]v = 
∑ (qi∗vi)L

j=1

∑ qj
L
j=1

  

[4]t = tikp
0  + 

ln[
（xi(t)−xikp

0 )

V(d,p)
A

 +1]

A
 

[5]A= 
𝑉(d+1,p)−𝑉(𝑑,𝑝)

𝑥𝑑+1−𝑥𝑑
 

Where, 
i = a vehicle; 
p, P = measurement period and total number of measurement periods, respectively;  
t0, t1 = start and end of measurement period p, respectively;  
x0, x1= start and end location of section k, respectively;  
Lk = length of section k;  
{x0ikp, t0ikp} = entry location and time of a vehicle in section k, period p; 
{x*ikp, t*ikp} = exit location and time of a vehicle in section k, period p; 
xi(t) = trajectory of vehicle i as a function of time;  
vi(t)= speed of vehicle i as a function of time; 
V(k,p) = mean speed on section k during time period p. 
 
The trajectory algorithm for a single vehicle trajectory can be schematically presented, as in figure 3 (van 
Lint 2003). It assumes that the time interval P is defined; in the space-time diagram, time stamps would be 
n*P (0, P, 2*P, 3*P….i*P). When a vehicle enters region (k,p) at location (x0,t0), it exits at (x*, t*). Assuming 

that the whole travel time during this section range is p (0 ≤ p ≤ i*P), if p＜P, the vehicle will continue to 

the next distance section, and the travel time will be accumulated; this algorithm will be repeated until the 

sum of time p＞P. In the next time interval, as the cycle repeats, the predicted values that fall within that 

interval are added up until the predicted travel time crosses into the next time period and so on. On the 

other hand, if in the first calculation p＞P, the vehicle would leave this section at (x1, p), and continue to 

travel on to the second section. From this method, vehicles’ imagined trajectories can be built, and then the 
dynamic speed and tendency can be tracked. By using the travel time of each trajectory group in every 
section, the travel time of the whole corridor can be assembled. Finally, considering the travel time of 
vehicles with different trajectory types and their volume, the average travel time can be estimated. 
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Figure 3: Trajectory algorithm for section-level travel time estimators (van Lint 2003) 

2.3 Travel Time Example under Variable Traffic Conditions 

The study site is from 122 Street to 170 Street at Whitemud Drive; this is a freeway with heavy traffic volume 
in the city of Edmonton, AB, Canada. The time section used for the study is from 4:29 pm to 5:30 pm on a 
Friday, which is during peak hours. The traffic condition is illustrated in the following figure: 

  

Figure 4: Trajectory method for section-level travel time estimators 

 
For the reason that 122 Street is a major road that links south Edmonton with downtown, the graph depicts 
congestion during the whole time, which is the reason for the speed being less than 60 km/h. And on the 
road from 156 Street to 169 Street, the speed is lower than 70 km/h after 5:00 pm. 
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According to the PLSB method, the corridor should be divided into sections. After considering the loop 
detector position and operation situation, the resulting division is shown as follows in Figure 5: 
 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    Figure 5: Section on Whitemud Drive 
 
In this paper, in order to make the simulated result similar to actual loop detector data after optimization at 

the greatest extent, fundamental diagram-related parameters 
, ,f crv      of the METANET model were 

calibrated to be [80, 35, 2.8] based on field traffic data. Similarly, with the given demand inputs for mainline 
and on-ramps, the global parameters [ , ,  ] in equation 2 were optimized by Sequential Quadratic 
Programming at 0.02, 28.8, and 10, respectively. In the graphs in figure 6, it is shown that with when the 
parameters are defined, simulated speeds are almost the same as in real time, except for section 1 with 
speeds around 80 km/h, higher than real-time speeds, which are around 65 km/h. This is mainly due to the 
reason that in this section, the predicted result is calculated from the data of 122 Street at Whitemud Drive, 
where there is recurring congestion. Thus, the speed is lower than the freeway speed of Whitemud Drive. 
 

 
Figure 6: Speed comparison between estimated data and actual data 

 
In order to make a comparison, travel time and trajectories were calculated based on the METANET model 
estimated data and actual loop detector data individually. 

Table 1: Distance of sections  

Section Intersection  Distance 

(No.)  (At Whitemud Drive) (Meters) 

1 122 St - 53 Ave  2050 

2 53 Ave - 58 Ave 550 

3 58 Ave - Fox Dr 1000 

4 Fox Dr - 142a St 1000 

5 142a St - 149 St 600 

6 149 St - 156 St 700 

7 156 St - 170 St 900 

 



 

GEN-235-7 
 

Building on Our Growth Opportunities     May 27 – 30, 2015 
Miser sur nos opportunités de croissance             REGINA, SK 
 
 

Table 2: Result of METANET model estimated data 

Trajectory Travel Time 
(sec) Type Number of vehicles  

1 11 0 367.0 

2 1 0 370.582 

3 4 0 389.1 

4 1 0 375.0 

5 44 0 374.0 

6 2 0 382.7 

7 6 0 376.3 

8 51 0 379.0 

9 3 0 386.1 

Average Time 0 376.4 

 
Table 3: Result of actual loop detector data 

Trajectory  Travel Time 
(sec) Type Number of vehicles  

1 5 0 418.0 

2 3 0 418.0 

3 1 0 420.0 

4 2 0 417.3 

… 

13 2 0 423.7 

14 4 0 424.0 

15 6 0 423.3 

16 4 0 422.1 

Average Time 0 385.1 

 
In table 3, there are 16 trajectory types for the actual loop detector data, and the number of vehicles varies 
from one to six. Whereas in table 2, for the METANET model, there are only nine trajectory types for the 
estimated data. It is apparent that trajectories of the actual data were more random. This is due to the 
reason that, after being modeled, the noise of the actual data would be decreased, and then the vehicles 
would be grouped according to trajectory type. Types 1, 5 and 8 in table 2 have more vehicles than the 
other trajectory types.  
 
As shown in tables 2 and 3, the estimated travel time calculated from actual detector data was 385.1 
seconds, compared to 376.4 seconds, as computed from estimated data under the METANET model, but 
the difference of 8.7 seconds was only 2.3% of 385.1 seconds, so the deviation was not significant.  
 
For ground truth data in table 4, which were produced from camera records after data filtering, there were 
35 vehicles that could be assigned as ground truth vehicles. The travel time varied from 354 seconds to 
463 seconds. It showed that when reaching the peak traffic hour (5:00 pm–6:00 pm), the travel time of 
targeted vehicles would be even longer, nearly 100 seconds. The average travel time of the ground truth 
data was 391.3 seconds, about 14.9 seconds and 6.2 seconds more (about 3.8% and 1.6% of 391.3 
seconds, respectively) than previous estimated travel time data, according to estimated data and actual 
data respectively. 
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Table 4: Results of ground truth 

No. 
Time template (PM) Travel time 

(sec) 122 170 

1 3:04:35 3:10:49 374 

2 3:05:37 3:11:46 369 

3 3:07:33 3:13:27 354 

4 3:07:37 3:13:37 360 

5 3:09:45 3:16:18 393 

… 

31 4:24:55 4:31:38 403 

32 4:28:25 4:35:48 443 

33 4:47:54 4:55:28 454 

34 4:49:28 4:56:48 440 

35 4:57:19 5:06:02 463 

Average Time   391.3 

 
Figure 7 shows that for every 10 minutes passed, the targeted vehicle number will decrease during data 
collection. This is mainly caused by the decrease of daylight in winter time.  

 
Figure 7: Number of vehicles every 10 minutes 

 
Figure 8 depicts the travel time for vehicles traveling from 122 Street to 170 Street along Whitemud Drive 
every 10 minutes, demonstrating an overall increasing trend. The reason for this trend is that, on Friday, 
starting from 4 pm, there would be many vehicles returning from towns and industries outside of 
Edmonton. Especially around 6 pm, heavy congestion may happen along this corridor. 

 
Figure 8: Average time of vehicles every 10 minutes 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13

122 street

170 street

350.0
360.0
370.0
380.0
390.0
400.0
410.0
420.0
430.0
440.0
450.0
460.0
470.0

10 20 30 40 50 60 70 80 90 110 120



 

GEN-235-9 
 

Building on Our Growth Opportunities     May 27 – 30, 2015 
Miser sur nos opportunités de croissance             REGINA, SK 
 
 

3. CONCLUSION 

In this study, the estimated result of 385.1 seconds was similar to the ground truth result of 391.3 seconds. 
This demonstrates that with this improved PLSB model, travel time based on corridor level can be 
calculated relatively accurately with two conditions. One is the assumption of a convex combination of 
dynamic speeds rather than a constant speed, and the second is imagined vehicles’ trajectories, which can 
reduce bias from dividing travel vehicles into various groups and transferring section-level–based travel 
time into corridor-level–based ones. Then, even though there have different travel time estimation models 
based on loop detector data, for example, the PCSB trajectory method (Coifman 2002) and the (AKF) 
adaptive Kalman filter method (van Lint 2003), the PLSB still shows its advantages in accuracy for the 
previous two conditions.  
 
In practice, some loop detector facilities along the road do not work perfectly all the time, or we may need 
current data to make a future forecast of travel conditions. The METANET model can help to achieve this. 
In the paper, the result only differs 14.9 seconds from the ground truth. Compared to 391.3 seconds, it is 
still an acceptable deviation. 
 
Even though the combination of the METANET and PLSB models can provide a relatively precise 
estimation of corridor travel time, there are still some factors that influence accuracy. In the METANET 
model, when high traffic density or congestion occurs on the road, the bias from actual speed and volume 
will increase. In addition, in the process of filtering ground truth data, the randomness of the vehicle, the 
limitation of light, and the delay of camera information reflection would lower the veracity of the ground truth 
data. 
 
In future work, this paper will mainly work on improving the testing environment, data filtering and model 
simulation level, as well as other aspects. In addition, future work will involve more data collection by using 
probe vehicles to collect ground truth data, adjusting the study time segment, and so on. By performing 
these adjustments, a more efficient travel time prediction model can be built in later research. 
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