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Abstract: An accurate modelling of the material behavior is important in the design and analysis of a 
structure.  The combined isotropic and kinematic hardening material model proposed by Chaboche has 
been one of the models that is widely used in the numerical modelling to simulate the response of steel 
under cyclic loading. A combined experimental and numerical study has been carried to develop a 
procedure to systematically calculate the parameters for the model that can predict the material response 
under both monotonic and cyclic loading. Nineteen straight and notched round specimens of ASTM A572 
Grade 50 steel were tested under monotonic and cyclic loading until fracture. The cyclic tests were 
carried out at various strain ranges. A systematic procedure that enables the calculation of the 
parameters for the material model that are equally applicable for monotonic and cyclic loading has been 
developed and are presented. Numerical simulations with these parameters have been found to be in 
good agreement with the measured stress-strain curves of the round specimen tests. Good agreement 
has also been found between the test and predicted instance of fracture of the specimen using a variation 
of the continuum damage mechanics fracture criteria by Lemaitre. 

1 Introduction 
 
The performance of structures under any loading condition is greatly dependent on the material 
behaviour.  An accurate modelling of the material behavior is important in the design and analysis of a 
structure especially in assessing the performance a structure to withstand seismic load.  The combined 
isotropic and kinematic hardening material model proposed by Chaboche (1986) has been one of the 
models that is widely used in the numerical modelling to simulate the response of steel under cyclic 
loading. In steel structures, ductile fracture may occur due to low-cycle fatigue and overload.  However, 
parameters for the material model used in most numerical simulations (Kanvinde and Deierlein 2004) 
carried out to predict fracture for low-cycle fatigue were different from that for predicting fracture under 
monotonic loading.  Since the loading type that leads to fracture in a real situation is not known a priori, 
only a single set of material model parameters have to be used in a general numerical simulation to 
model both monotonic and cyclic loading. Thus, the challenge is to determine a single set of parameters 
that can reasonably model the behaviour for both monotonic and cyclic loading until fracture. 

2 Background 

2.1 Combined Isotropic and Kinematic Hardening Plasticity Material Model 

There are two basic work hardening rules that are widely used in describing the plastic behaviour of steel 
(metals): isotropic hardening and kinematic hardening.  Isotropic hardening occurs when the yield surface 
expands uniformly in the stress space during plastic deformation.  In kinematic hardening, the yield 
surface does not change its form and orientation but translates in the stress space similar to a rigid body 
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translation. When combining isotropic and kinematic hardening rules to describe the plastic behaviour, 
the yield surface translates in the stress space as well as expanding or contracting in its size. Some basic 
concepts of plasticity are introduced below to help facilitate the discussion. The yield function is given by 
 
[1] 0),(f ijij =κα−σ  
 
where σij is the stress tensor, αij is the backstress tensor and κ is a scalar that defines the size of the 
yield surface.  For metals, von Mises yield criterion for isotropic material that combines isotropic and 
kinematic hardening can be expressed as 
 
[2] 0)S)(S( 2

ijijijij =κ−α−α−  
 
where Sij is the deviatoric stress tensor.  The plastic deformation of metals is normally assumed to follow 
the associated flow rule, which is given by 
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where p
ijdε  is the change in the plastic strain tensor and dλ is a constant of proportionality with the 

equivalent plastic strain increment defined as 
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Similarly, the equivalent stress associated with plastic deformation can be defined as 
 

[5] ijijeq SS
2
3

=σ . 

 
Chaboche (1986) proposed a combined isotropic and nonlinear kinematic hardening model with multiple 
backstress evolution terms that was derived from the model by Armstrong and Frederick (1966). The 
backstress evolution for the model by Chaboche can be expressed as 
 
[6] p

eqijk
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k ddCd
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[7] ∑ α=α ij
k

ij  
 
with k denotes the backstress tensor αij, material constants C and γ for the k kinematic hardening term. 

2.2 Fracture Criteria 

There have a number of criteria proposed to predict fracture of steel. Huang and Mahin (2008) has 
adopted the fracture criteria based on continuum damage mechanics developed by Lemaitre (1985) in 
their study. In the present study, a variation of the criteria and damage evolution by Huang and Mahin has 
been adopted to predict fracture of the specimen. The damage evolution adopted in this study can be 
expressed as  
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where D is the damage, c, m and q are material constants, σm is the hydrostatic or mean stress, E is the 
elastic modulus and ν is the Poisson’s ratio. Fracture is assumed to occur when the damage D reaches a 
critical limit Dc.  Unlike the criteria by Huang and Mahin, the exponent q on stress triaxiality, σm/σeq, is 
allowed to vary, and the state of damage D is assumed to be uncoupled from the material constitutive 
relationship.  Thus, the state of damage D does not appear in Eq. [9] for the expression associated with 
the strain energy density. 

3 Test Program 
 
A total of thirty nine specimens of ASTM A572 Grade 50 and CSA G40.20/21 Grade 300W steel were 
tested by Wen (2012). Only results of nineteen specimens of ASTM A572 Grade 50 steel are discussed 
in this paper. Kanvinde and Deierlein (2004) have conducted many ultra low-cycle fatigue tests on Grade 
50 (Fy = 345 MPa) and higher strength steels.  The test program by Kanvinde and Deierlein has been 
used as a reference in designing the test matrix for the present study. 
 
Effects of mean stress, strain range and loading sequence are investigated in the current test program.  
Tests were carried out with different mean to effective stress ratio (σm/σeq) by using specimens with 
straight and notched profiles. The profile of the straight and notched specimens are shown in Figs.1 to 
3.Three loading sequences up to fracture consist of monotonic tension, cyclic loading followed by tension, 
and cyclic loading only were considered. Specimens were subjected to both a large strain range but a 
small number of up to 20 cycles to fracture similar to the tests by Kanvinde and Deierlein and as well as 
subjected to a smaller strain range but a larger number of loading cycle to fracture. The test matrix is 
listed in Table 1. 
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Figure 1: Notched specimen profile A (D10R14N) with dimensions in mm 
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Figure 2: Notched specimen profile B (D14R19N) with dimensions in mm 
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Figure 3: Straight specimen profile D (D14R24U) with dimensions in mm 
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Table 1. Test matrix 

Specimen Profile Test type
Nominal engineering 
cyclic strain range

Nominal true cyclic 
strain range

ADMa D14R24U Monotonic test － －

ADMb D14R24U Monotonic test － －

AAMa D10R14N Monotonic test － －

AAMb D10R14N Monotonic test － －

ABM D14R19N Monotonic test － －

ADC20202 D14R24U 20 cycles, pull to failure ±2% ±2%
ADC40101 D14R24U 40 cycles, pull to failure ±1% ±1%
ADC40102 D14R24U 40 cycles, pull to failure  -2% to 1%  -2% to 1% 
ADC40202 D14R24U 40 cycles, pull to failure ±2% ±2%
ADCR0201 D14R24U 30 cycles, pull to failure ±2%, ±1% ±2%, ±1% 1

AAC20404 D10R14N 20 cycles, pull to failure ±0.6% ±4%
ABC20404 D14R19N 20 cycles, pull to failure ±0.9% ±4%
AAC70404 D10R14N 70 cycles, pull to failure ±0.6% ±4%
ABC70404 D14R19N 70 cycles, pull to failure ±0.9% ±4%
AACF1212 D10R14N Cycle to failure  -1.8% to 1.65% ±12%
ABCF1212 D14R19N Cycle to failure  -2.8% to 2.3% ±12%
AACF3010 D10R14N Cycle to failure  -1.5% to 3.67%  -10% to 30%
ABCF3010 D14R19N Cycle to failure  -2.3% to 5%  -10% to 30%
AACR0804 D10R14N Cycle to failure ±1.2%, ±0.6% ±8%, ±4% 2  

Notes: 
1 First subjected to 10 cycles of loading between strain range of -2% to +2%, then subjected to 20 cycles 

of loading between strain range of -1% to +1% before being pulled to failure in tension. 
2 First subjected to 8 cycles of loading between nominal true strain range of -8% to +8%, then subjected 

to cyclic loading between nominal true strain range of -4% to +4% until failure. 

4 Calibration of Parameters for Material Model 
 
For the mixed-mode hardening model proposed by Chaboche (1986), the equivalent flow stress can be 
expressed as 
 

[10] ijij
y SS

2
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=σ  and 
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for the size of the yield surface based on von Mises yield criterion.  Under uniaxial tension loading, the 
flow stress reduces to  
 
[12] α+σ=σ=σ 0

11
y  and the backstress 

[13] ijij11 2
3)sgn( ααα=α  

 
where σ11 and α11 are the normal stress and backstress in the loading direction, sgn(α11) is 1 when α11 
is positive and -1 when α11 is negative.  
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4.1 Calibration of Parameters for Flow Stress Equation 

For a standard straight specimen, the stress and strain are uniform across the reduced section of the 
specimen before necking occurs.  The true stress σt for a straight specimen can be taken 
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approximated as )1( ee ε+σ  where F is the load, A is the current cross-sectional area, A0 is the 

undeformed cross-sectional area, σe is the engineering stress and εe is the engineering strain.  The true 
strain is given by 
 
[15] )1ln( et ε+=ε , and approximated as 
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for the true plastic strain. These equations are valid up to the peak load point before necking occurs. Due 
to the non-uniform stress and strain distribution at the necking region, only Eqs. [14], [16] and [17] can be 
used as the approximate calculations after necking has started.  Chen (2010) has proposed using an 
empirical equation to estimate the flow stress versus equivalent plastic strain curve after the peak load 
directly from the test data.  After necking has occurred, the true flow stress can be corrected according to 
the equation to be 
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where Apeak is the cross-sectional area at peak stress, avg

tσ  is the average true flow stress given by Eq. 
[14].  However, an equation to describe the flow stress in terms of plastic strain has to be used in order be  
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Figure 4: Curve fitting of the flow stress versus equivalent plastic strain data of straight specimens 

able to define the flow stress beyond the strain that necking occurs under uniaxial monotonic tension 
loading.  A modified equation proposed by Chinh et al. (2004) 
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where y

0σ  is the initial flow stress, y
∞σ  is the maximum additional flow stress, εp is the plastic strain, p

0ε  
is the plastic strain at the start of strain hardening, b and n are material constants can be used to describe 
on the flow stress in terms of plastic strain. Parameters of Eq. [19] for a material can be determined 
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through least-square fitting of the measured flow stress vs. plastic strain calculated using Eqs. [14] to [18] 
for a straight profile specimen under uniaxial monotonic tension loading. Figures 4 and 5 show results of 
curve fitting of Eq. [19] and the predicted load (stress) vs. deformation of straight profile specimen tests 
using the calculated parameters. All numerical simulations in the present study were carried out using 
finite element analyses package ABAQUS (Simulia 2009). 
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Figure 5: Test and predicted engineering stress versus deformation curves for straight specimens 

4.2 Calibration of Parameters for Combined Isotropic and Kinematic Hardening Model 

Parameters for kinematic hardening C and γ, and σo vs. εp relationship have to be defined in order to 
carry out the numerical simulation using the model by Chaboche (1986). Figure 6 shows the  
relationship between various stress components under monotonic uniaxial tension loading according to 
Eq. [12]. If parameters for kinematic hardening C and γ are known, σo vs. εp relationship can be 
calculated according to the relationship between various stress components shown in Fig. 6 by 
substracting the backstress α calculated using C and γ from the flow stress in Fig. 4 that has been 
established with Eq. [19]. The backstress for each kinematic hardening term under uniaxial monotonic 
loading is given by 

[20] 

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kk . 

From results of the tests, it can be expected that structural steel can have a large accumulated plastic 
strain under cyclic loading before fracture occurs.  For this reason, the calibration of the parameters for 
the kinematic hardening should consider the behaviour at both small and large strains. 

For the calibration at small strain, data from a stabilized cycle under uniaxial cyclic loading such as 
specimen ADC40202, can be used to approximate the backstress by taking σo in Eq. [12] to be the 
saturated yield stress 0

sσ . Only one branch of the stabilized stress-strain curve due to either tension or 
compression is needed for the calibration.  Using the tension branch, the assumed static true stress 
versus true plastic strain curve used in the calibration is shown in Fig. 7.  For calibration purposes, the 
start of the assumed curve is taken as twice the assumed saturated yield stress (2 0

sσ ) above the point at 
the beginning of the tension branch. It is taken to be a constant until it is exceeded by the test data. Since 
the flow stress is a summation of yield stress and backstress, the backstress therefore can be obtained 
by subtracting the assumed saturated yield stress from the static true stress versus true plastic strain 
curve. Plotting relative to the start of the tension branch, Fig. 8 shows the calculated backstress at the 
selected 15 evenly spaced data points along the strain range used in the calibration at the 20th cycle of 
ADC40202 for 0

sσ  = 464 MPa. The backstress in Fig. 8 can be expressed according to the evolution in 
Eq. [6] as 
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where ∆εp is the plastic strain range and εp is the incremental plastic strain from the beginning of tension 
branch. 
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Figure 6: Relationship between various stress components under monotonic uniaxial tension loading 
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Figure 8: Curve fitting of backstress for small strain, tension branch ADC40202 cycle #20, 0

sσ  = 464 MPa 
 

The data used in calibrating the kinematic hardening parameters at large strain range curve can be 
generated from the equation describing the flow stress and the assumed saturated yield stress. Based on 
the parameters solved for Eq. [19] and the assumed saturated yield stress, the backstress versus plastic 
strain data can be calculated using Eq. [12]. From results of the cyclic test of a straight specimen at ±2% 
strain, the stress-strain curve is close to be stabilized only after a few cycles of loading. Thus, for the 
purpose of calibrating kinematic hardening parameters at large strain, the yield stress can be assumed to 
be saturated at a strain of 0.2 when generating the data points for the calibration.  It has been found that 
using of data points up to the strain of 10 in the calibration is sufficient to ensure that the stress generated 
with the calibrated hardening parameters to be constant after the strain of 10. Figure 9 shows the 
backstress versus plastic strain curve used in calibrating the kinematic hardening parameters based on 
Eq. [20] for 0

sσ  = 464 MPa and ∆ 0
sσ  = 14 MPa, where 30 evenly spaced data points have been selected 

from the strain range of 0.2 to 10 as compared to the 15 data points for small strain. The 2 to 1 ratio in the 
number of data points for large strain versus small strain has been found to give a good result in the 
calibration. Although the stress versus strain curve of ADC40202 may appear to be stabilized at the 20th 
cycle, the yield stress at the 20th cycle may actually be different from the final saturated yield stress at a 
very large strain.  For this reason, the addition of ∆ 0

sσ  to 0
sσ  as the assumed saturated yield stress to 

generate large strain calibration data allows two assumed yield stresses to be used in calculating the 
backstress data in least-square fitting to obtain the kinematic hardening parameters. The kinematic 
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hardening parameters Ck and γk are determined by least-square fitting of Eq. [21] through the backstress 
in Fig. 8 and Eq. [20] through the backstress in Fig. 9 concurrently. Numerical simulations using the 
σo vs. εp relationship established with these kinematic hardening parameters are compared to the load 
(stress) vs. deformation (strain) curve of the cyclic notched specimen test, ABC20404, to obtain the 
optimum kinematic hardening parameters. Values of 0

sσ  and ∆ 0
sσ  are adjusted until a good match 

between the test and predicted load (stress) vs. deformation (strain) curve of ABC20404 has been 
achieved. 

0

300

600

900

0 2 4 6 8 10

Tr
ue

 s
tre

ss
 (M

Pa
)

Equivalent plastic strain (mm/mm)

Flow stress Assumed yield stress
Backstress data Backstress 1
Backstress 2 Backstress 1 + 2

MPa 4780
s

0
s =σ∆+σ

 
Figure 9: Curve fitting of backstress for large strain with 0

sσ  = 464 MPa and 0
sσ∆  = 14 MPa 
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Figure 10: Test and predicted stress versus deformation curves for straight specimen ADC40202 
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Figure 11: Test and predicted stress versus strain curves for notched specimen AAC70404 

 
Using two kinematic hardening terms, the optimum hardening parameters are obtained with 0

sσ  = 464 

MPa and 0
sσ∆  = 14 MPa. It has been found that numerical simulations with one kinematic hardening term 

could not closely predict results of all tests.  With an assumed Poisson’s ratio ν = 0.3, the measured 
elastic modulus E = 205600 MPa, y

0σ  = 362 MPa and p
0ε  = 0.0053, the rest of the parameters for the 

hardening model have been determined to be y
∞σ  = 417 MPa, n = 0.77, b = 4.53, C1 = 3625 MPa, γ1 = 

39.46, C2 = 711 MPa and γ2 = 3.39. Curve fitting used in obtaining the optimum hardening parameters are 
shown in Figs. 8 and 9. Using these parameters, numerical simulations were carried out for all other tests. 
Comparisons of the test and predicted load (stress) vs. deformation (strain) curve for some of the tests 
are shown in Figs. 5, 10 and 11. There is good agreement between the test and predicted load (stress) 
vs. deformation (strain) curves for different specimen profiles and loading. 
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5 Fracture Prediction 

Using results of numerical simulations in Section 4.2, a simple trapezoidal integration rule has been 
employed to calculate the damage evolution of Eq. [8] as 
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where i is the current time increment step of the total m increment steps, f(σ) is the damage evolution 
function of damage criterion, p

eqε∆  is the change in the equivalent plastic strain at the increment step i, 
pf
eqε  is the equivalent plastic strain at fracture. The damage measurement at fracture Dc for each  

 
Table 2. Test and predicted point of fracture, c = 1, m = 3.07, k = 1.44, cD = 9.95 

Specimen
Test type / 

fracture
Damage 

at fracture dp/df (d0-dp)/(d0-df )
Predicted 

fracture cycle εaf εap εaf /εap

ADMa Monotonic 10.53 1.01 0.98 － － － －

ADMb Monotonic 10.33 1.01 0.99 － － － －

AAMa Monotonic 7.62 0.96 1.09 － 0.070 0.073 1.04
AAMb Monotonic 8.21 0.97 1.06 － 0.070 0.073 1.04
ABM Monotonic 6.66 0.95 1.14 － 0.094 0.102 1.09

ADC20202 20 cycles+ 10.68 1.01 0.98 20+ － － －

ADC40101 40 cycles+ 8.49 0.97 1.05 40+ － － －

ADC40102 40 cycles+ 9.83 1.00 1.00 40+ － － －

ADC40202 40 cycles+ 10.11 1.00 1.00 40+ － － －

ADCR0201 30 cycles+ 10.39 1.01 0.99 30+ － － －

AAC20404 20 cycles+ 11.02 1.02 0.95 20+ 0.544 0.535 0.98
ABC20404 20 cycles+ 12.27 1.04 0.89 20+ 0.805 0.794 0.99
AAC70404 70 cycles+ 14.42 1.25 0.04 70 1.729 1.675 0.97
ABC70404 70 cycles+ 12.35 1.08 0.17 62 2.554 2.226 0.87
AACF1212 9 cycles 9.36 0.95 2.17 9 0.621 0.633 1.02
ABCF1212 7 cycles 9.02 1.03 0.73 8 0.734 0.822 1.12
AACF3010 3 cycles 8.73 0.95 1.22 3 0.339 0.346 1.02
ABCF3010 3 cycles 7.81 0.88 2.17 3 0.448 0.478 1.07
AACR0804 48 cycles 9.95 1.05 -0.07 49 1.350 1.364 1.01  

 
specimen is calculated with Eq. [22] up to the cross-sectional reduction equal to that of the test at 
fracture. The arithmetical average of the damage at fracture cD  of all the test specimens is regarded as 
the damage limit. Parameters m and q in Eqs. [8] and [9] are adjusted until the error ER in the predicted 
damage at fracture is minimized according to 
 

[23] 
( )

∑
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where j is the specimen number for a total of p specimens. The predicted diameter and/or loading cycle at 
fracture for each specimen is assumed to occur when the accumulated damage reaches cD .  
 
Results of fracture prediction based on FEA simulations are listed in Table 2, where d0 is the initial 
diameter of the specimen, df and dp are the measured and predicted diameters at fracture, εaf and εap are 
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the measured and predicted accumulated engineering strain at fracture.  Calculations of dp/df, (d0-dp)/(d0-
df) and εap/εaf are also listed in the table.  The cycle number followed by ‘+’ indicates that fracture occurs 
when pulling the specimen after undergoing the indicated number of loading cycle. For monotonic tension 
tests, comparisons are made based on the test and predicted diameter at fracture, dp/df and (d0-dp)/(d0-
df).  However for cyclic tests, the cycle number at fracture can be a more important measurement than the 
diameter at fracture since the change in the diameter is small within the loading cycle. The ratio of 
predicted and measured accumulated engineering strain at fracture is also a good measurement for both 
monotonic tension and cyclic tests for notched specimens. Overall, the criterion can reasonably predict 
the instance of fracture of the specimen using one set of material model parameters in numerical 
simulations of monotonic and cyclic tests. Ratios of (d0-dp)/(d0-df) for monotonic tests and εap/εaf for cyclic 
tests are within 10% of unity except for three specimens that are within 15%. 
 

6 Conclusions 

The following conclusions can be drawn from the presented study: 

1. A systematic procedure that enables the calculation of the parameters for the material model that are 
equally applicable for monotonic and cyclic loading has been developed. 

2. Numerical simulations with the calibrated parameters have been found to be in good agreement with 
the measured stress-strain curves of the round specimen tests. 

3. Good agreement has also been found between the test and predicted instance of fracture of the 
specimen using a variation of the continuum damage mechanics fracture criteria by Lemaitre using 
one set of material model parameters. 
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