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Abstract: A finite element formulation is developed for the steady state analysis of doubly symmetric thin-
walled members subjected to harmonic forces. The formulation is based on the Vlasov beam 
assumptions. A family of exact shape functions is formulated based on the closed form solutions of the 
governing equations. The shape functions are then used to formulate the mass and stiffness matrices and 
the energy equivalent load vector. The finite element is applicable to prismatic thin-walled of doubly 
symmetric open cross-sections and captures the St. Venant and warping deformation effects, as well as 
translational and rotary inertia. Comparisons are provided against other established solutions to assess 
the accuracy and efficiency of the finite element. The results based on the present finite element 
formulation are observed to be free from the discretization errors. As a result, accurate solutions are 
obtained while keeping the number of degrees of freedom to a minimum. 
 
 
1. Literature Review on Finite Element Formulations and Scope 
 
The literature focuses on finite element formulations for the dynamic analysis of open thin-walled 
members. In general, finite element are based on three approaches of shape functions; (1) approximate 
polynomial interpolation functions, (2) shape functions based on the exact solution of the static 
equilibrium equations, and (3) shape functions based on exact solution of the dynamic equations of 
motion. Most finite element formulations developed are based on the approximate shape functions 
including the work of Chen and Tamma (1994), Lee and Kim (2002a, b), Kim and Kim (2005), Voros 
(2008, 2009), Vo and Lee (2009, 2010) and Vo et al. (2010, 2011). Among them, Chen and Tamma 
(1994) used the finite element method in conjunction with an implicit-starting unconditionally stable 
methodology for the dynamic analysis of thin-walled open members under deterministic loads. Hashemi 
and Richard (2000a) studied the coupled bending–torsional vibration analysis of thin-walled beams by 
developing a dynamic finite element. Their solution can be regarded as an intermediate method between 
the finite element method and the dynamic stiffness matrix method. The exact solutions of the governing 
dynamic equations of equilibrium were obtained and, subsequently, frequency-dependent hyperbolic 
interpolation functions were adopted to formulate the stiffness and mass matrices of the structure. Later 
on, Hashemi and Richard (2000b) extended their work to include the effect of axial force. By using linear 
and cubic Hermitian shape functions, Lee and Kim (2002a, 2002b) investigated the coupled free vibration 
of thin-walled composite beams with doubly symmetric and channel-shaped cross-sections. Kim and Kim 
(2005) derived the coupled bending-torsional free vibration of asymmetric thin-walled shear deformable 
beam by using an isoparametric finite beam element. The influence of lateral forces on the coupled 
bending-torsional free vibration of thin-walled open members was studied by Voros (2008, 2009). In his 
formulations, a two-noded beam element with fourteen degrees of freedom is formulated. Recently, Vo 
and Lee (2009, 2010) and Vo et al. (2010, 2011) studied the coupled flexural-torsional free vibration of 
thin-walled open composite beams under constant axial forces and end moments by developing a 
displacement-based one dimensional finite element model. Formulations based on the exact solution for 
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static equilibrium equations include the work of Mei (1970) and Hu et al. (1996). They have the advantage 
of avoiding locking problems which could arise in some of the solutions based on polynomial 
interpolation. Finite element solutions based on exact homogeneous solution of the dynamic equations of 
motion include the work of Hjaji and Mohareb (2011) and offer two advantages: (1) it eliminates the 
discretization errors encountered in other finite element formulations, and thus it converges to the solution 
using a minimum number of degrees of freedom, and (2) it lead to elements that are free from shear 
locking arising from the approximate interpolation functions.  
 
This paper aims at developing a finite element formulation for dynamic analysis of doubly symmetric thin-
walled open members subjected to harmonic forces, in which the St. Venant and warping torsional 
effects, the translational and rotary inertias effects are incorporated. The present paper develops an 
efficient finite element based on exact shape functions that exactly satisfy the homogeneous form of the 
governing field equations of motion. The exact shape functions developed in the companion paper (Hjaji 
and Mohareb 2013) are implemented to formulate the exact stiffness, mass matrices and the associated 
load potential vector in finite element formulation.   
 
 
2.  Main Assumptions  
 
The formulation is based on the following assumptions: 

1. Cross-sections are assumed open and doubly symmetric, 
2. Cross-sections are assumed to remain undeformed in their own plane but free to undergo warping 

deformation in the longitudinal direction, 
3. Transverse shear deformation are neglected, 
4. Material is assumed linearly elastic, and 
5. The strains and rotations are assumed small. 

 
 
3. Displacement Fields 
 

Based on the above assumptions, the longitudinal displacement  , ,pw z s t  and the mid-surface ad 

displacement components  , ,pu z s t  and  , ,pv z s t  at a general point  ,p x y located on the mid-

surface of the cross-section (Fig. 1a) can be expressed in terms of displacements  ,u z t  and  ,v z t of 

the shear centre cS in the principal X and Y directions and the rotation angle  ,z z t about longitudinal 

axis [Vlasov 1961] as: 
 

[1]                , , , , , ,p zw z s t w z t x s u z t y s v z t s z t        

[2-3]        , , , ,p zu z s t u z t y s z t  ,  and          , , , ,p zv z s t v z t x s z t   

 

in which  ,w z t is the average longitudinal displacement along Z axis,  x s  and  y s are the 

coordinates of point p along the principal axes, and  s  is the warping function defined by 

   
A

s h s dA   [Vlasov 1961]. In the present formulation, since the applied longitudinal loads are 

assumed to vanish, and since the longitudinal equation of motion is uncoupled from the other equations 

of motion [Hjaji and Mohareb 2013a], the average longitudinal displacement  ,w z t  will equally vanish. 

All primes denote derivatives with respect to space coordinate z .  
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Figure (1): Coordinate system and displacement fields 

 
 
4. Expressions for Force Functions 
 

The applied harmonic forces are assumed to have an exciting frequency   and are given by: 
 

[4]            , , , , , , , ei t

x y z x y zq z t q z t m z t q z q z m z     , and                                                        

 

[5] 

           

           

, , , , , , , , , , ,

, , , , , e

x e y e z e x e y e w e

i t

x e y e z e x e y e w e

V z t V z t M z t M z t M z t M z t

V z V z M z M z M z M z    

                                

 

where 1i   is the imaginary constant,  ,jq z t  for ,j x y , are the distributed lateral and 

transverse forces,  ,zm z t  is the distributed twisting moment,  ,x eV z t  and  ,y eV z t are the 

concentrated lateral and transverse forces,  ,j eM z t for , ,j x y z are the end moments and 

 ,j eM z t  is the end bimoments, all harmonic forces and moments applied at beam ends (i.e., 0,ez  ) 

and assumed to have the same sign convention as those of the end displacements (Fig. 1). 
 
 
5. Expressions for Displacement Fields 
 
Under the above applied harmonic forces, the steady state displacements at the mid-surface are 
harmonic, i.e.,  
 

[6]            , , , , , , , ei t

z zu z t v z t z t u z v z z                                               

 

where    ,u z v z and  z z  are space functions for lateral, transverse, and torsional responses, 

respectively. In line with the objective of this study, the displacement functions in Equation (6) neglect the 
transient response. 
 
 
6. Hamilton’s Variational Formulation 
 
The variational form of Hamiltonian functional is taken to be stationary, i.e.,  
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[7]  2 2

1 1

* * * 0
t t

t t
T U dt W dt                          

 

in which T is the variation of the kinetic energy, U is the variation of the internal strain energy, W is 

the variation of the work done due to applied forces, while the integration is performed between arbitrary 

time limits 1t and 2t . The expressions for energy variations are given as [e.g. Librescu 2006]: 

 

[8-9] 
*

p p p p p p
A

T u u v v w w dz         ,
*

0 0
zz zz z z

A
U E dAdz GJ dz         , and  

 

[10] 

           

           

               

*

0 00

0 00

0

, , , , , ,

, , , , , ,

, , , , , , , ,

x e e y e e x e e

y e e z e z e w e z e

z x y z z

W V z t u z t V z t w z t M z t v z t

M z t u z t M z t z t M z t z t

q z t w z t q z t u z t q z t v z t m z t z t dz

   

  

   

          

           

     

           

 

in which zz pw z   is the longitudinal strain, E is the modulus of elasticity, G is the shear modulus, 

 is the material density, J is the St. Venant torsion constant and A is the area of the cross-section, and 

all dots denote the derivatives with respect to time t .  

  
From Equations (1-6), by substituting into energy term expressions (8-10), and the resulting expressions 
into Hamilton’s principle (Eq. 7), performing integration by parts and enforcing the orthogonality conditions

                 , , , , , 0
A

x s y s x s y s x s s y s s s dA      , yields:   

 

[11] 

     

 

               

       

0

2 2

0
0

yy xx w z z z z x y z z

o z z yy xx w z z

x e e y e e x e e y e e

z e z e w e z e

EI u u EI v v EC GJ q z u q z v m z

Au u Av v Ar I u u I v v C dz

V z u z V z v z M z v z M z u z

M z z M z z

        

             

   

 

             

          


     

   



             

 

In which  2
o xx yyr I I A  . 

 
 
7. Formulating Exact Shape Functions 

 
The homogeneous solutions of the governing equilibrium equations related to lateral, transverse and 
torsional responses as derived in the companion paper (Hjaji and Mohareb 2013a) can be rewritten as: 
 
 

[12-14]         
4 11 4

T
u z E z A 

 ,       
4 11 4

T
v z E z B 

 ,       
4 11 4

T

z z E z C


   
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where the vector of integration constants 
1 2 3 4 1 14

TT
A A A A A

 
 , 

1 2 3 4 1 14

TT
B B B B B

 
 ,  

1 2 3 4 1 14

TT
C C C C C

 
 and   31 2 4

1 4

T
zz z zE z e e e e

  



 ,   31 2 4

1 4

T
zz z zE z e e e e

  



 ,

  31 2 4

1 4

T
zz z zE z e e e e

  



 , in which the roots  

1 2
1 2

1,2 1 2q q    
 

,  
1 2

1 2

3,4 1 2i q q   
 

where 
2

1 2q E  ,  2

2 1 yyq q A EI  . The roots i are obtained through similar expression after 

replacing 
yyI by xxI , and the roots i are obtained by  

1 2
1 2

1,2 1 2s s    
 

,  
1 2

1 2

3,4 1 2i s s   
 

, 

where  2

1 2w ws C GJ EC   and 
2 2

2 o ws A r EC  . 

 
To relate the displacement functions to the nodal displacements, the vector of integration constants 

 
4 1

A


 is expressed in terms of the nodal lateral displacements and slopes 1 2 3 41 4 1 4

T T

nu u u u u
 
 by 

enforcing the conditions   10u u ,   20u u  ,   3u u  and   4u u  , yielding  

 

[15]  

 

 

 

 

 

 

 

 

     

1 4

1 4

1 11 4 4

1 4

1 4

00

00

T

T

n T

T

Eu

Eu
u A G A

u E

u
E















  





 
   
   

    
    

  
  

     
  

                          

 
From equation (15), by substituting into equation (12), one obtains: 
 

[16]            
1

1 14 41 4 1 4

T T

n nu z E z G u H z u  



  
                          

 

in which      
1

4 41 4 1 4

T T
H z E z G  



 
 is the matrix of shape functions for the lateral response. It is 

noted that the interpolation shape functions presented in Equation (16) exactly satisfy the homogeneous 

form of the lateral equation (12). In a similar way, the transverse displacement  v z and torsional rotation 

 z z are expressed in terms of nodal transverse displacement  
4 1nv


and torsional angle  
4 1z n


as 

 

[17-18]         
11 4

T

nv z H z v 
  and      

11 4

T

z znz H z 


                    

 

where  
1 4

T
H z 

and  
1 4

T
H z 

are the matrices of exact shape functions for transverse and torsional 

responses, given by    
1

1 4 1 4 4 4

T T
H z E z G  



  
    , and    

1

1 4 1 4 4 4

T T
H z E z G  



  
    . 

 
 
8. Finite Element Formulation 

 
From equations (16-18), by substituting into equation (11), yielding 
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     

   

   

     

   

   

 

 

 

 

 
 

4 1 4 14 4 4 4 4 4 4 44 4 4 4

2

4 14 4 4 4 4 4 4 44 4 4 4 4 1

4 1 4 14 4 4 4 4 4 4 44 4 4 4 12 112 12

0 0 0 0

0 0 0 0

0 0 0 0

n xn

n yn

zn zn

K M u F

K M v F

K M F

 

 

  

     

     

      

       
       

                  
                        12 1




 


 
 
 

 

                                                                                                      (19) 
 

in which       
10

T

yyK EI H z H z dz    
   ,     

10

T

xxK EI H z H z dz   
      , 

         
1 10

T T

wK EC H z H z GJ H z H z dz       

            are the element stiffness 

matrices for lateral, transverse and torsional responses, respectively. The element mass matrices for 
lateral, transverse and torsional responses are; 

           
1 10

T T

yyM A H z H z I H z H z dz     
   

   
   , 

         
1 10

T T

xxM A H z H z I H z H z dz     
   

          , and  

         2

1 10

T T

o wM Ar H z H z C H z H z dz     
   

          , and the element 

vectors of applied lateral, transverse and torsional forces are, respectively, given by 

               
1 4 1 4 1 4 10 0 0

xn x x yF z q H z dz V z H z M z H z     
     
    , 

               
4 1 4 1 4 11 0 0 0

yn y y xF z q H z dz V z H z M z H z    

     
     , and 

               
1 4 1 4 1 4 10 0 0

zn z z wF z m H z dz M z H z M z H z     

     
    . 

 
The above expressions for stiffness, mass and load vector formulated for two-noded beam element with 
four degrees of freedom per node for each uncoupled response (i.e., lateral, transverse and torsional) are 
calculated by using the exact shape functions.  
 
 
9. Examples and Discussion 
 
In this section, several examples are investigated in order to demonstrate the features of the present finite 

element formulations. In these examples, material is steel with a modulus of elasticity 200E GPa , and 

shear modulus 70G GPa and density
37,850 /Kg m  , and the dimensions of the doubly symmetric 

cross-section are; flange width 203b mm , middle surface height, flange thickness 13.5ft mm , web 

thickness 8wt mm . The finite element formulation developed in the present paper is based on the 

exact shapes functions which exactly satisfy the homogeneous form of the field equations. Due to this 
treatment, the mesh discretization errors induced in the finite element formulations using polynomial 
shape functions are eliminated. As a result, it is observed that, the results obtained based on a single 
finite element in the cantilever beam model (Example 1) and two finite elements for simply-supported 
beam model (Example 2) exactly matched with those based on the closed-form solutions up to five 
significant digits. The results obtained are based on three solutions; (1) present solution based on Vlasov 
beam theory which neglects shear deformation and distortional effects, (2) Abaqus two-noded B31OS 
beam element model with seven degrees of freedom (i.e., three translations, three rotations and warping 
deformation) which accounts for shear deformation effects due to bending but neglects the shear 
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deformation effect due to warping, and distorsional effects, and (3) Abaqus S4R four-noded shell element 
(with six degrees of freedom per node, i.e., three translation and thee rotations) which accounts for the 
effects of shear deformation and distortional effects. 
 
9.1 Example 1: Cantilever under Harmonic Transverse Forces – Flexural Response 
 
A 4.0m cantilever beam with a doubly symmetric I-section subjected to transverse harmonic forces; (i) 

concentrated force  , 8.0 i t
yP t e kN , (ii) concentrated end moment  , 6.0 i t

xM t e kNm  

applied at the cantilever free end, and (iii) distributed force  , 4.0 /i t
yq z t e kN m is considered. The 

dimensions of the I-section (Fig. 1b) are; flange width 203b mm , mid-surface height 238.5H mm , 

flange thickness 13.5ft mm , web thickness 13.5ft mm , and the geometric properties are; 

27,389A mm , 
6 487.10 10xxI mm  , 

6 4373.7 10J mm  , 
9 6268.0 10wC mm  . This example 

is aimed at verifying the validity and accuracy of the present finite element formulations. It is required to 
(1) conduct the quasi-static analysis of the cantilever beam under the given harmonic forces by adopting 

an exciting frequency 10.001 , and (2) compute a steady state dynamic analysis 11.40 , where 

the first natural transverse frequency of the cantilever is 1 18.83Hz  . 

 
Under the present finite element formulation, the nodal degrees of freedom are obtained using a single 
finite beam element with eight degrees of freedom per element. In Abaqus shell solution, a total of 3,200 

S4R elements ( 40,570 dof) are used (six elements per flange, eight elements along web height and 

one hundred-sixty in the longitudinal direction of the beam), while in Abaqus beam model, a one-hundred 

B31OS beam elements ( 700 dof) are needed to eliminate the discretization errors. 

  
9.1.1 Quasi-Static Flexural Solution 
 
In order to approach the quasi-static response of the cantilever beam under the given harmonic 

transverse forces, the exciting frequency  is taken significantly lower than the first natural transverse 

frequency 1 , i.e., 10.001 0.118 /secrad  . Table (1) provides the quasi-static response results 

for the maximum transverse displacement at the free end. The nodal displacement results obtained from 
the present formulation based on using a single finite element are found identical to the closed-form 
solution. It is seen that the maximum transverse displacement results obtained from the present finite 
element solution are in excellent agreement with the Abaqus beam element model but both solutions 
slightly differ from Abaqus shell element solution by 0.110%-0.188% for Abaqus beam model and by 
0.22%-2.88% for the solution developed in the present study. The former differences are due to shear 
deformation effects due to warping and distortional effects which are not captured by Abaqus B31OS 
beam element while the later differences are due to shear deformation effects due to shear forces and 
warping as well as distortional effects which are omitted in the present formulation.  
 
9.1.2 Dynamic Flexural Solution 
 
The steady state transverse response of the cantilever beam under the given harmonic forces with 

exciting frequency 11.328 157.1 / secrad  is provided in Table (1). The maximum transverse 

displacement results based on the formulation developed in this study are compared with those based on 
Abaqus S4R shell and B31OS beam element solutions. It is noted that results obtained from the present 
finite element formulation based on one beam element (12 dof) provide an excellent agreement with 
Abaqus beam model based on-hundred (≈700 dof) but both solutions vary from Abaqus shell model 
based on one hundred sixty S4R shell element (≈40,570 dof) by 3.61% to 5.55% and 2.44% to 3.82% 
respectively. The first difference is due to shear deformation and distortional effects which are not 
captured in the present Vlasov solution while the second difference is due to the shear deformation 
effects due to warping and distorsional effects which are captured by Abaqus Shell model but not in the 
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Abaqus beam solution. The results provided in Table (1) demonstrate that the shear deformation effects 
have more significant effects on steady state dynamic analysis than static response analysis.   
 

 
Table (1): Static and steady state responses results for cantilever under harmonic transverse forces 

 

Type of 
response 

Type of 
force 

Tip transverse displacement in (mm) 

Abaqus  

shell  

solution [1] 

(40,570DOF) 

Abaqus 
beam 

solution [2] 

(700 DOF) 

Present 
finite 

element [3] 

(8 DOF) 

Difference 

=[1-2]/1 

Difference 

=[1-3]/1 

Static 

10.001  

( , )yP t  10.01 9.866 9.831 1.44% 1.79% 

( , )xM t  2.762 2.759 2.756 0.11% 0.22% 

( , )yq z t  7.568 7.426 7.350 1.88% 2.88% 

Steady 
State 

11.328  

( , )yP t  -12.52 -12.89 -13.01 -2.96% -3.91% 

( , )xM t  2.957 3.070 3.121 -3.82% -5.55% 

( , )yq t  -10.26 -10.51 -10.63 -2.44% -3.61% 

 
 
9.2 Example 2: Simply-supported I-beam under Torsional Harmonic Loads- Torsional Response 
 
In order to investigate the torsional steady state response, a simply-supported beam is subjected to (1) 

distributed harmonic twisting moment  , 1.20 /i t
zm z t e kNm m and (2) concentrated harmonic 

twisting moment  2, 5.0 i t
zM t e kNm applied at the mid-span of the beam (i.e., 2z  ). The 

simply-supported beam has a span 5.0m and a doubly symmetric cross-section identical to that 

given in Example 1. In this example, it is required to (i) conduct the steady state torsional response 
analysis (in which the exciting frequency is varied from nearly zero to 200Hz) and extract the natural 
torsional frequencies, (ii) investigate the static and steady state torsional dynamic analyses by using two 

exciting frequencies 10.01 t and 11.250 t , respectively. The first natural torsional frequency of 

the given simply-supported beam is 1 24.51t Hz  . In order to validate the accuracy and validity of the 

present formulation, the present finite element solution based on two beam elements with twelve degrees 
of freedom is compared with (i) Abaqus shell solution using 3,000 S4R element, and (2) Abaqus beam 
model solution using 100 B31OS beam element are used to eliminate the discretization errors. 
 
9.2.1 Extracting Natural Torsional Frequencies 
 

Under uniformly distributed harmonic twisting moment  , 1.20 /i t
zm z t e kNm m , the natural 

torsional frequencies are extracted from the steady state torsional analysis.  Table (2) provides the first 
three natural torsional frequencies of the simply-supported beam.  Close agreement is observed between 
all three solutions. The solution based on the present Vlasov theory predicts the highest natural 
frequencies values while the Abaqus shell solution predicts the lowest values. In other words, Abaqus 
shell solution (since it captures the shear deformation and distorsional effects) provides the most flexible 
model while the present solution provides the stiffest model. The natural frequencies predicted by the 
present solution differed from 1.59% to 2.68% from those based on Abaqus shell solution. 
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Table (2): The first three natural torsional frequencies of cantilever I-beam under harmonic torsion 
 

Mode 
Abaqus shell 
solution [1] 
(37,570dof) 

Abaqus beam 
solution [2] 
(700dof) 

Present finite 
element [3] 

(12dof) 

Difference 
=[1-2]/1 

Difference 
=[1-3]/1 

1 24.04 24.49 24.51 -1.87% -1.96% 

2 72.43 73.51 73.58 -1.49% -1.59% 

3 149.4 152.1 153.4 -1.81% -2.68% 

 
 

9.2.2 Comparison of Torsional Responses 
 
Table (3) provides the static and steady state torsional responses results for the nodal torsional rotation 
angle at the mid-span of the beam. Results obtained are based on three solutions; (a) the finite element 
formulation developed in the present study, (b) Abaqus B31OS beam solution, and (c) Abaqus S4R shell 
element solution. It is noted that, as a general observation, the rotation angle results obtained by the 
present finite element solution using two-elements having twelve degrees of freedom are closely 
matched with those determined by the Abaqus beam model using 100 B31OS beam element with 700 
dof, but both solutions differ from Abaqus shell solution based on finest mesh (3000 S4R shell element 
having 37,570 dof). The Abaqus shell element overpredicts the rotation angle by 3.68%-4.23% for static 
torsional response and by 3.68%-4.37% for steady state torsional response compared with the present 
study. Again, these differences are due to the inclusion of shear deformation and distorsional effects in 
the Abaqus shell solution but not in the present solution. As a result, the present formulation provides 
results in very close agreement with Abaqus shell solution with fewer degrees of freedom.  
 
 

Table (3): Static and steady state responses for simply-supported I-beam under torsional loads 

Type of 
Analysis 

Type  
of load 

Abaqus 
shell 

solution [1] 
(37,570dof) 

Abaqus 
beam 

solution [2] 
(1,400dof) 

Present 
finite 

element [3] 
(60dof) 

Difference 
=[1-2]/1 

Difference 
=[1-3]/1 

Static 

10.01 t  

( , )zm z t  0.0803 0.0771 0.0769 3.99% 4.23% 

( 2, )zM t  0.1086 0.1050 0.1046 3.31% 3.68% 

Steady state 

11.25 t  

( , )zm z t  0.2476 0.2387 0.2371 3.59% 4.24% 

( 2, )zM t  -0.1854 -0.1774 -0.1773 4.31% 4.37% 

 
 

9.3 Example 3: Continuous Two-Span beam – Finite element   
 
A two-span beam of a doubly symmetric I-section subjected to two harmonic forces: concentrated 

transverse force  6 , 15.0 i t
yP m t e kN and distributed transverse force  , 8.0 /i t

yq z t e kN m is 

considered as illustrated in Figure (2). The geometric and properties of the doubly symmetric section are 

given as in Example 1. The first natural frequency for the given beam is 1 8.877Hz  .  

 

The exciting frequency is assumed to take two values 10.001 (quasi-static) and 12.38  (steady 

state response), where the first natural frequency for the continuous beam is 1 8.877Hz  in the 

present problem. It is required to compare the quasi-static and steady state dynamic responses based on 
the finite element with Abaqus beam element solution.       
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Z

4 2 8 0. m 

1 2 3 4 5
1 2 543 6

 10 10 0 i t
yP m,t . e kN

2 0. m

  4 0 i t
yq z ,t . e kN / m

 
Figure (2): Two-span beam of doubly symmetric I-section under transverse harmonic forces 

 
 

In order to demonstrate the validity and capability of the present finite element based on Vlasov beam 
theory, the nodal degrees of freedom results for static transverse response and steady state transverse 
dynamic response are obtained and compared against the results based on established finite beam 
element Abaqus. Under the present finite element solution, only five elements with twenty degrees of 
freedom are used to achieve the convergence while in Abaqus beam analysis, the model is consisted of 
two-hundred beam B31OS elements with 700 degrees of freedom along the beam axis. 
 

The quasi-static and steady state transverse displacements  v z are plotted against the beam 

longitudinal coordinate z as illustrated in Figures (1a) and (1b), in which the quasi-static transverse 

response is approached by using a very low exciting frequency   compared to the first natural 

frequency, i.e., 10.001 0.111 secrad  , and the steady state dynamic response is determined for 

exciting frequency 11.417 157.1 secrad  . Compared with Abaqus beam element model (using 

two-hundred B31OS beam element with 1400 dof) , the finite element formulation developed in present 
study using five beam elements with twenty degrees of freedom provides an excellent agreement.  
 
 

 

 Figure (2): Static and steady state dynamic transverse responses for two-span I-beam 
 
 
10.   Summary and Conclusions 
 
1. A finite element solution is formulated for prismatic thin-walled members of doubly symmetric open 

cross-sections. The new beam element is based on the exact shape functions were formulated based 
on the closed-form analytical solutions developed in the companion paper [Hjaji and Mohareb 2013a]. 
Using the exact shape functions, the variational form of Hamilton’s principle was adopted to formulate 
the exact stiffness, mass matrices and the energy equivalent load vector. The formulation captures the 
St. Venant and warping deformation effects, translational and rotary inertial effects. 

2. The finite elements developed in this study were shown to be free of discretization errors occurred in 
the conventional finite element. 
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3. The finite element solution is capable to efficiently capture the static and steady state dynamic 
responses of beams under various harmonic forces. The solution is also able to capture the eigen-
frequencies and eigen-modes of the member. 

4. The comparison demonstrated that the new finite element solution provides excellent agreement with 
Abaqus solutions model while keeping the number of degrees of freedom a minimum. 
 
 

11. References 
 
Chen, X. and Tamma, K. 1994, Dynamic Response of Elastic Thin-walled Structures Influenced by 

Coupling Effects, Computers and Structures, 51(1): 91 - 105. 
Hashemi S. M., Richard M. J. 2000a, A Dynamic Finite Element Method for Free Vibrations of Bending -

Torsion Coupled Beams, Aerospace Sci. Technology, 4: 41 - 55. 
Hashemi S. M., and Richard M. J. 2000b, Free vibrational analysis of axially Bending-Torsion Coupled 

Beams-A dynamic finite element, Computers and structures, 77: 711 - 724. 
Hjaji, M. A. and Mohareb, M. 2011, Steady State Harmonic Response of Doubly symmetric Thin-Walled 

Members-Under Harmonic Loads - Finite Element Formulation, Second International Engineering 
Mechanics and Materials Specialty Conference, Ottawa, Canada. 

Hjaji, M. A. and Mohareb, M. 2013a, Harmonic Response of Doubly symmetric Thin-Walled Members 
Based on the Vlasov Theory - I. Analytical Solution, Third Specially Conference on Material 
Engineering and Applied Mechanics,  Montreal, Quebec, Canada. 

Hu, Y. et al. 1996, A Finite Element Model for Static and Dynamic Analysis of Thin-walled Beams with 
Asymmetric Cross-Sections, Computers and Structures, 61: 897 - 908.  

Kim, N. I. and Kim, M. N. 2005, Exact Dynamic/Static Stiffness Matrices of Non-Symmetric Thin-Walled 
Beams considering coupled shear deformation effects, Thin-walled Structures, 43: 701-734. 

Lee, J. and Kim, S. E. 2002a, Free Vibration of Thin-walled Composite Beams with I-Shaped cross-
sections, Composite Structures,  55 (2): 205 - 215. 

Lee, J. and Kim, S. E. 2002b, Flexural–torsional coupled vibration of thin-walled composite beams with 
channel sections, Computers and Structures, 80: 133 -144. 

Mei, C. 1970, Coupled vibrations of thin-walled beams of open section using the finite element method, 
International journal of mechanical science, 12: 883 - 891. 

Vlasov, V. 1961, Thin-walled elastic beams, 2nd edition, Jerusalem, Israel Prog. for Scientific Translation. 
Voros, G. 2008, On Coupled Vibrations of Beams with Lateral Loads, Journal of computational and 

Applied Mechanics, 9 (2): 1 - 14. 
Voros, G. M. 2009, On Coupled bending-torsional vibrations of beams with initial loads, Mechanics 

Research Communications, 36: 603 - 611. 
Vo, T. P. and Lee, J. 2009, Flexural-torsional coupled vibration and buckling of thin-walled open section 

composite beams using shear-deformable beam theory, International Journal of Mechanics Sciences, 
51: 631 - 641. 

Vo, T. P. and Lee, J. 2010, Interaction curves for vibration and buckling of thin-walled composite box 
beams under axial loads and end moments, Applied Mathematical Modelling, 34: 3142 - 3157. 

Vo, T. P. et al. 2010, On triply coupled vibrations of axially loaded thin-walled composite beams, 
Computers and Structures, 88 (3-4): 144 - 153. 

Vo, T. P. et al. 2011, Vibration analysis of thin-walled composite beams with I-shaped cross-sections, 
Composite Structures, 93 (3-4): 812 - 820. 

 


