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Abstract: The steady state response of thin-walled members with doubly symmetric cross-sections 
subjected to harmonic forces is investigated. Using the Hamiltonian functional, the governing differential 
equations and related boundary conditions are formulated based on the Vlasov thin walled beam theory. 
The formulation takes into account the effect of warping deformation and translational and rotary inertia. 
The resulting governing field equations are then exactly solved and closed form solutions for transverse 
and torsional responses are obtained for common boundary conditions. Numerical examples are then 
presented and comparisons are made against other established Abaqus beam and shell solutions to 
assess the accuracy of the present analytical solutions.  
 
 
1. Introduction and Background 
 
Thin-walled members are used as structural components in aircraft wing and fuselage structures, vehicle 
axles, propellant and turbine blades, ship and marine structural frames, steel building structures. In these 
applications, members are commonly subjected to cyclic dynamic loading (e.g., harmonic forces). 
Sources of such forces include aerodynamic effects, hydro-dynamic wave motion and wind loading. Also, 
harmonic forces can be arise from unbalance in rotating machinery and propellants, reciprocating 
machines and traffic motion in steel bridge structures. In such applications, thin-walled members under 
effect of harmonic loads are prone to fatigue failure, an important limit state when designing these 
structural members. Under harmonic forces, the steady state component of the response is sustained for 
a long time and is thus of particular importance in fatigue design. In contrast, the transient component of 
response which is induced only at the beginning of the excitation tends to dampen out quickly and is thus 
of no importance in assessing the fatigue life of a detail. Within this context, the present study aims at 
developing an accurate and efficient solution which captures and isolates the steady state response. The 
present analytical solutions are also able to capture the static response and predict the eigen-frequencies 
and eigen-modes of the member.  
 
 
2. Literature review  
 
The classical theory of thin-walled beams developed by Vlasov (1961) is widely used in the analysis of 
thin-walled members with open sections. The theory is based on two kinematic assumptions; (i) the beam 
cross-section does not deform in its own plane, and (ii) the transverse shear strains at the mid-surface are 
negligible. Friberg (1983), Leung (1991,1992), Chen and Tamma (1994), Li et al. (2004) and Kim et al. 
(2007) developed the dynamic stiffness matrix of Vlasov beam in which the shear deformation is ignored. 
Using the normal mode method, Eslimy-Isfahany et al. (1996) developed a solution for the response of 
coupled bending-torsion vibration of thin-walled beams under deterministic and random excitations. 
Yaman (1997) studied the triply coupled forced vibration behaviour of thin-walled beams with open 
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channel cross-sections under single-point harmonic excitation by using the wave propagation approach. 
Adam (1999) analyzed the coupled bending-torsional vibrations. His analysis incorporates warping 
effects. Yaman (2002) developed an analytical solution for the triply coupled forced vibrations of 
elastically supported, open cross-section, single and multi-bay channels. A common feature between the 
solutions of Yaman (1997), Adam (1999), and Yaman (2002) is their solutions capture warping effects but 
omits shear deformation effects. Lee and Kim (2002a,b) investigated the free vibration of thin-walled 
composite beams with doubly symmetric and channel cross-sections. The influence of constant lateral 
forces on the bending-torsional coupled free vibration of thin-walled open members was lately studied by 
Voros (2008, 2009). Recently, Vo and Lee (2010) and Vo et al. (2011) studied the coupled flexural-
torsional free vibration of thin-walled open composite beams under constant axial forces and end 
moments. For the most part, the above studies have focused on solutions primarily aimed at extracting 
the natural frequencies and mode shapes, with little or no attention on determining the response of 
members under harmonic forces. 
 
To the best of the author’s knowledge, closed-form solutions of thin-walled based on the Vlasov theory for 
open members subjected to harmonic forces have not been published. Within this context, this paper 
formulates the field equations and boundary conditions for the problem and provides closed form 
analytical solutions for members of doubly symmetric sections subjected to various harmonic excitations. 
The present solution captures warping effects as well as translational and rotational inertial effects.  
 
 
3.     Assumptions 
  
The following assumptions are made: 
   1.  The thin-walled member is linearly elastic and prismatic, 
   2.  Strains and rotations are assumed small, 
   3.  The member cross-section does not deform in its own plane, and 
   4.  Shear strains on the middle-surface of the cross-section are negligible. 
 
 
4. Kinematics and Displacements 
 
A thin-walled member with doubly symmetric open cross-section is assumed to have has a fixed right-

handed orthogonal Cartesian coordinate system  , ,X Y Z with the Z coinciding with the longitudinal 

axis. A local coordinate system  , ,n s Z  is positioned on the contour (middle line of the cross-section) in 

which coordinates n and s are taken along the normal and along the tangent to the middle surface at the 

point of interest.  Based on the above assumptions, the longitudinal displacement  , ,pw z s t  and in-

plane displacements  , ,pu z s t  and  , ,pv z s t  of a generic point ( , )p x y  located on the middle 

surface of the doubly symmetric section (Fig. 1) are respectively given by [Vlasov 1961] 
 

[1]                , , , , , ,p zw z s t w z t x s u z t y s v z t s z t        

[2-3]        , , , ,p zu z s t u z t y s z t  ,            , , , ,p zv z s t v z t x s z t                                

 

in which  ,w z t is an integration function which represents the average longitudinal displacement, 

 ,u z t and  ,v z t are the displacement components of the shear centre cS along the principal 

directions X and Y respectively, ( , )z z t  is the angle of twist, ( )x s and ( )y s are the coordinates of 

point p along the principal axes (Fig. 1a), and  s  is the warping function (Vlasov 1961) of the cross-

section defined by    
A

s h s dA   . All primes denote derivatives with respect to coordinate z . 
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Figure (1): Coordinate systems and displacement components 

 
 
5. Expressions for Force Functions 

 
The thin-walled member is assumed to be subjected to (i) general distributed harmonic loads within the 
structural member and (ii) concentrated harmonic loads at both ends, i.e., 
 

[4]                , , , , , , , , , , ei t

z x y z z x y zq z t q z t q z t m z t q z q z q z m z             

                  

[5] 

             

             

, , , , , , , , , , , , ,

, , , , , , e

z e x e y e z e x e y e w e

i t

z e x e y e z e x e y e w e

N z t V z t V z t M z t M z t M z t M z t

N z V z V z M z M z M z M z    

                 

 

where   is the circular exciting frequency of the external forces, 1i    is the imaginary constant 

 ,zq z t ,  ,xq z t ,  ,yq z t are the distributed longitudinal, transverse and lateral harmonic forces, 

 ,zm z t is the distributed harmonic torsion,  ,z eN z t ,  ,x eV z t ,  ,y eV z t  are the concentrated 

longitudinal, transverse and lateral harmonic forces,  ,z eM z t ,  ,x eM z t ,  ,y eM z t  are the 

harmonic end moments and  ,w eM z t is the harmonic end bimoments, all forces and moments applied 

at beam ends  0,ez  . All applied forces are assumed to have the same sign convention as those of 

the end displacements (Figure 1). 
 
 
6. Expressions for Displacement Fields 
 
In the absence of damping and under the above harmonic forces, the steady state displacements at the 
middle surface are assumed to take the harmonic form  
 

[6]                , , , , , , , , , , ei t

z zw z t u z t v z t z t w z u z v z z                                                    

 

in which  w z ,  u z ,  v z ,  z z are space functions for longitudinal translation, bending 

translations and angle of twist, respectively. In line with the objective of the paper, the displacement 
functions proposed in Equation (9) neglect the transient component of the response. 
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6.  Variational Formulation 
 

The variational form of the Hamiltonian functional H is taken to be stationary, i.e.,  
 

[7]  
2

1

0
t

t
H T U W dt                                                                     

 

in which T is the variation of kinetic energy, U is the variation of internal strain energy and W is the 

virtual work done by external forces, and the integration is performed between arbitrary time limits 1t and 

2t . The expressions of the variations are 

 

[8-9] 
0

p p p p p p
A

T u u v v w w dAdz          ,
0 0

zz zz z z
A

U E dAdz GJ dz          

[10] 

           

           

           

       

0 0 0

0 00

0 0

, , , , , ,

, , , , , ,

, , , , , ,

, , , ,

z e e x e e y e e

x e e y e e z e z e

w e z e z x

y z z

W N z t w z t V z t u z t V z t w z t

M z t v z t M z t u z t M z t z t

M z t z t q z t w z t q z t u z t

q z t v z t m z t z t dz

   

  

  

 

           

           

      

  


                

 

where E is the modulus of elasticity, G is the shear modulus,  is the density of member material, zz is 

the longitudinal strain taken as zz pw z    , J is the Saint-Venant torsional constant, A is the cross-

sectional area. All primes denote derivatives with respect to space coordinate z , while dots denote 

derivatives with respect to time t . 

 
 
7. Field Equations 
 
From Equations (1-3) and (4-6), by substituting into equations (8-10), and the resulting energy 
expressions into Equation (7), performing integration by parts and enforcing the orthogonality conditions 

                 , , , , , 0
A

x s y s x s y s x s s y s s s dA      , the equations of motion are recovered: 

 

[11-12]   2

zEAw A w q z     ,    2 2iv

yy yy xEI u I u A u q z                                   

[13-14]   2 2iv

xx xx yEI v I v A v q z      ,     2 2 2iv

w z w z o z zEC C GJ A r m z             

 
It is noted that, the above governing differential equations are similar to those derived by Vlasov (1961) 
for free vibration of thin-walled beams with three differences: (a) The time dependence of the equations 
for motion has been eliminated as direct outcome of the substitution made in Eq. (6), (b) the presence of 
non-zero forcing functions on the right hand sides of Equations (11-14), and (c) the inertia terms are now 
specialized for the case of harmonic forces. It is observed that the four equations of motion are uncoupled 
for the case of doubly-symmetric cross-sections considered in the present study. The associated natural 
and essential boundary conditions are: 
 

   
0

0zEAw N z w z    ,    
0

0yy yEI u M z u z     ,    
0

0yy xEI u V z u z      

   
0

0xx xEI v M z v z     ,       
0

0xx yEI v V z v z                          
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[15-21]       
0

0w z z z zEC GJ M z z        ,      
0

0w z w zEC M z z                      

 
In the following, focus will be on the solution of bending and torsional equations (i.e., Eqs. 12-14). 
 
 
8. Homogeneous Solutions for Bending and Torsional Equations  
 
The homogeneous solutions for lateral, transverse and torsional equations (12-14) are obtained by setting 

the right hand side to zero, i.e.,       0x y zq z q z q z   . The homogeneous solutions  hu z , 

 hv z and  zh z are assumed to take the form 

 

[22]      , ,i i iz z z

h i h i zh iu z A e v z B e z C e      , for 1,2,3,4i                                    

 

where iA , iB and iC (for 1,2,3,4i  ) represent three sets of independent unknown integration 

constants to be determined from the boundary conditions of the problem. Equations (22) are substituted 
into Equations (12-14) and the resulting three characteristic equations are solved for constants yielding 

the roots  
1 2

1 2

1,2 1 2q q    
 

,  
1 2

1 2

3,4 1 2i q q   
 

,where 
2

1 2q E  ,  2

2 1 yyq q A EI  . 

The roots i are obtained through similar expression after replacing yyI by xxI . The roots i  are 

obtained by  
1 2

1 2

1,2 1 2s s    
 

,  
1 2

1 2

3,4 1 2i s s   
 

, where  2

1 2w ws C GJ EC   and 

2 2

2 o ws A r EC  . 

 
 
9. General Solutions for Bending and Torsional Equations  
 

The general solution for the case of constant forces , ,x y zq q m are obtained by summing the 

homogeneous and particular solutions, yielding 
 

[23-24]           2

4 11 4

T

i xu z E z A q A 


   ,         2

4 11 4

T

i yv z E z B q A 


   ,    

[25]           2 2

4 11 4

T

z i z oz E z C m A r 


                                    

 

in which   31 2 4

1 4 1 4

TT rr r r

rE z e e e e
 
  , for  , ,r    . 

 
9.1 Case 1: Cantilever beam under transverse forces 
 

A cantilever I-beam subjected to a transverse harmonic force   i t

yP e 
and bending moment   i t

xM e 
at  

the free end is considered. Imposing the related boundary conditions    0 0 0v v    , 

   xx yEI v P  and    xx xEI v M  , the general solution is  

 

[26]        
1

2

1 4 4 4 4 1

T

yv z E z Q q A   


  
                                                                           
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where  
   

1 4

1 4

0 0

T

T y x

xx xx

P M
Q

EI EI
 



 , 
31 2 4

31 2 4

1 2 3 4

3 3 3 34 4
1 2 3 4

2 2 2 2

1 2 3 4 4 4

1 1 1 1

e e e e

e e e e

   

  

   

   

   





 
 
      
 
 

. 

 
 
9.2 Case 2: Solution for Simply-supported beam under twist 
 

A given simply-supported I-beam is subjected to (i) distributed harmonic torsion   i t

zm z e 
, bimoment

  i t

wm z e 
, and (ii) concentrated bimoment   i t

w eM z e 
applied at both ends (i.e., 0,ez  ). The 

beam supports leaves the end sections free to warp and to rotate about X and Y axes. By imposing the 

boundary conditions at beam both ends;  0 0z  ,    0 0w z wEC M  ,   0z   and 

   w z wEC M  , the total closed-form steady state solution for simply-supported beam under 

harmonic torsional loading is then obtained by 
 

[27]        
1

2 2

1 4 4 4 4 1

T

z z oz E z Q m A r   


  
        ,  for 0 2z          

                           

where 
31 2 4

31 2 4

2 2 2 2

1 2 3 4

4 4

2 2 2 2

1 2 3 4 4 4

1 1 1 1

e e e e

e e e e

   

  

   

   





 
 
      
 
 

,  and  
 

 

2 2

4 1 2 2

4 1

0

z o

w w

z o

w w

m A r

M EC
Q

m A r

M EC









 
 
  

  
 

 
  

. 

 
 
10.  Numerical Examples and Discussion 
 
The analytical closed-form solutions developed in the present study are used to provide the steady state 
dynamic response of thin-walled members under general harmonic excitations. The static response under 

harmonic forces can be approached by using very low exciting frequency 10.01  compared to the 

first natural frequency 1 . Two examples are conducted for beams with doubly symmetric cross-sections. 

In both examples, the material is assumed to be steel with 200E GPa , 77G GPa  and
37850 /Kg m  , while the geometric properties are; total height 252d mm , flange width 

203b mm , flange thickness 13.5ft mm , web thickness 8.0wt mm , 
27389A mm , 

6 487.3 10xxI mm  , 
3 4374 10J mm  , 

9 6268 10wC mm  . Results based on the present 

formulations are compared with Abaqus shell and beam solution. In Abaqus shell model, a shell S4R 
element with six degrees of freedom per node (i.e., three translations and three rotations) is used. The 
element captures shear deformation and distortional effects, while in the case of Abaqus beam model, a 
two-noded B31OS beam element with seven degrees of freedom per node (i.e., three translation, three 
rotations and warping deformation) which captures the shear deformation effects due to bending but 
discounts shear deformation effect due to warping and distortional effects. 
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10.1 Example (1) –Simply-supported Beam under Distributed Harmonic Forces   
 
A 5.0m span simply-supported beam of doubly symmetric I-section subjected to uniformly distributed 

harmonic forces (1) twisting moment ( , ) 1.20 /i t

zm z t e kNm m , and (2) transverse force 

( , ) 8.0 /i t

yq z t e kNm m is considered. Two values of exciting frequencies are used; (i) 10.01 to 

capture the static response and (ii) 11.25  to determine the steady state dynamic response of the 

beam. The first natural frequency for the given beam is 1 16.03Hz  . It is required to (i) conduct a 

steady state analysis and extract the transverse and torsional natural frequencies, (ii) conduct a quasi-

static analysis by adopting an exciting frequency 10.01 , and (iii) determine the steady state 

dynamic response 11.25 .  

 
In Abaqus shell model solution, a total of 6,000 S4R shell elements are used (i.e., 10 elements along 
each flange, 10 elements along the web height and 200 elements along the longitudinal axis of the 
beam), while in the case of Abaqus beam model, two hundred beam B31OS elements are needed to 
eliminate discretization errors.  
 
10.1.1 Extracting of Natural Frequencies 
 
The steady state analyses of the simply-supported I-beam under the given distributed harmonic torsion 

( , ) 1.20e /i t

zm z t kNm m and transverse force ( , ) 8.0e /i t

yq z t kNm m are independently solved 

in order to extract the related torsional and transverse natural frequencies of the beam. The first three 
Natural frequencies extracted from the torsional and transverse steady state responses presented in 
Table (1) are conducted based on the present solution (i.e., Eqs. 31 and 32), Abaqus shell and beam 
models solutions. As a general observation, excellent agreement is observed between all three solutions 
for torsional natural frequencies, while for the case of transverse natural frequencies, the frequencies 
predicted by the present Vlasov formulation are the highest followed by the Abaqus B31OS beam model, 
while the natural frequencies predicted from Abaqus shell solution are the lowest. This is due to the fact 
that the present formulation provides the stiffest representation of the stiffness.  
 
 

Table (1): Torsional and bending natural frequencies for Simply-supported I-beam 

Mode 
Abaqus shell 
solution [1] 

Abaqus beam 
solution [2] 

Present 
solution [3] 

Difference 
=[1-2]/1 

Difference 
=[1-3]/1 

1
st
 Torsional 24.04 24.49 24.51 -1.87% -1.96% 

2
nd

 Torsional 72.43 73.51 73.58 -1.49% -1.59% 

3
rd

 Torsional 149.4 152.1 153.4 -1.81% -2.68% 

1
st
 Transverse 33.53 34.13 34.33 -1.79% -2.39% 

2
nd

 Transverse 125.5 133.3 134.8 -6.22% -7.41% 

3
rd

 Transverse 259.3 278.2 282.5 -7.29% -8.95% 

 
 
In contrast, the Abaqus shell solution which captures shear deformation and distortional effects provides 
the most flexible representation of the stiffness. The torsional and transverse frequencies predicted by 
Abaqus shell model differ from those based on the present Vlasov solution by 1.59%-2.68% for torsional 
modes and 2.39%-8.95% for transverse modes.  
 
10.1.2 Static Transverse and Torsional Responses 
 
Based on the present formulations (Equations 31 and 32), the static responses of the simply-supported I-
beam under given harmonic distributed twisting moment and distributed transverse force with very low 
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exciting frequency 10.01 is approached. The static results for the maximum torsional rotation 
maxz

and maximum transverse displacement maxv at the mid-span of the beam are presented in Table (2). It is 

noted that, results for torsional angle ( )z z  and transverse displacement ( )v z based on the present 

Vlasov solution match nearly exactly those of the Abaqus beam model. Both solutions slightly vary from 
the Abaqus shell model solution. The differences are attributed to distorsional effects of the section and 
shear deformation due to warping which are captured in shell model but not in the other two solutions. 
 
10.1.3 Dynamic Transverse and Torsional Responses 
 

Under uniformly distributed harmonic twisting moment  , 1.20 /i t

zm z t e kNm m and distributed 

transverse force ( , ) 8.0e /i t

yq z t kNm m  with exciting frequency 11.25 125.9 /secrad  , the 

maximum amplitudes of steady state torsional maxz and transverse maxv responses for the simply-

supported I-beam are provided in Table (2).  
 
 

Table (2): Torsional and transverse responses results for simply-supported I-beam  

Variable 
Type of 

Response 

Abaqus 
Shell 

Solution[1] 

Abaqus 
Beam 

Solution[2] 

Present 
Solution[3] 

 

Difference 
=[1-2]/1 

Difference 
=[1-3]/1 

maxz (rad) Static 10.001  0.0803 0.0771 0.0769 3.99% 4.23% 

maxz (rad) Steady state 11.25  0.2476 0.2387 0.2371 3.59% 4.24% 

maxv (mm) Static 10.001  3.880 3.767 3.742 2.91% 3.56% 

maxv (mm) Steady state 11.25  -6.053 -5.871 -5.749 3.01% 5.02% 

 
 

Figures (2a) and (2b) illustrate the steady state torsional  z z  and transverse ( )v z  responses along 

the beam span, respectively. Results are based on the solution developed in the present study, Abaqus 
shell and beam solutions. It is observed that, the torsional angle and transverse displacement results 
presented in tabular and graphical forms based on the present solution coincide with Abaqus beam 
element, but slightly differ from the shell solution which exhibits a slightly more flexible response. Again, 
the differences are attributed to cross-sectional distorsional effects and shear deformation due to warping. 
 
 

  

Figure (2): Static and Steady state responses for simply-supported I-beam 
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10.2 Example 2 - Cantilever I-beam under Concentrated harmonic Loads  
 
A 3.0m span cantilever with the same doubly-symmetric cross-section as that given in Example 1 is 

subjected to two concentrated harmonic loads; (i) transverse load ( , ) 18.0ei t

yP t kN and (ii) twisting 

moment ( , ) 2.80ei t

zM t kNm applied at the free end of the cantilever beam. In order to validate the 

accuracy and exactness of the present analytical closed-form solutions, Abaqus shell and beam solutions 

are presented. It is required to (i) conduct a steady state dynamic response 11.28 , where the first 

natural frequency related to transverse response of the cantilever is 1 34.33Hz  and that related to the 

torsional response is 1 25.65t Hz  , and (ii) extract the natural frequencies and steady state bending 

and torsional modes. Abaqus model solutions based on B31OS beam and S4R shell elements are 
presented for comparison.  
 
10.2.1 Dynamic Response 
 

For the exciting frequency 11.28 125.4 /secrad  , Figures (3a, b) depict the transverse response 

 v z and torsional response  z z  of the cantilever I-beam under concentrated harmonic transverse 

and torsional loads. Results are in excellent agreement with the Abaqus B31OS beam model (based on 
200 elements) but slightly differ from Abaqus S4R shell solution (based on 2000 elements) which exhibits 
a little more flexible response. The present study predicts the maximum transverse displacement and 
twist angle are respectively 4.53% and 7.49% lower than those based on the Abaqus shell element 
model. Again, the differences are attributed to the distortional effect. It is noted that the distortional effects 
were observed to be more significant in torsional modes than in the bending modes.  
  
 

  
 

    Figure (3): Steady state responses of cantilever I-beam under concentrated harmonic loads 
 
 

10.2.2 Steady state bending and torsional responses 
 
Under the given harmonic forces, the first three natural frequencies related to the bending and torsional 
responses can be extracted from the steady state transverse and torsional analyses as illustrated in 
Figures (1a) and (1c). Figures (1a) and (1c) demonstrate the peak transverse displacement and torsional 
angle at the cantilever tip as a function of exciting frequency. The exciting frequency is varied from nearly 
zero to 650Hz. Results based on the present Vlasov and Abaqus B31OS beam element solutions (which 
capture only the shear deformation due to bending) are provided for comparison. Both solutions closely 
predict the location of the first peak corresponding to the fundamental bending and torsional frequencies. 
For higher frequencies, some discrepancy in the location of the peak responses becomes apparent 
between the two solutions. It can be seen that the shear deformation captured by Abaqus beam model 
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make the resonance (peak) frequencies lower than those predicted by present solution. This is expected 
that the shear deformation effects are more significant for higher frequencies than the lower ones. 
The dynamic analyses of the steady state transverse and torsional responses of cantilever I-beam are 

illustrated in Figures (4b) and (4d), respectively, for different values of frequency ratios 1i  , i.e., 

applied load frequency i to the first natural frequency 1 . Figure (4b) presents the transverse response 

of the cantilever I-beam subjected to the given transverse force for four values of frequency ratios 

1 1 0.5  , 1 1 2.5  , 1 1 6.5  and 1 1 17.5  which are indicated on curves by numbers 

1,2,3 and 4 (where 1 34.33Hz  is the first natural transverse frequency of the beam), while the 

torsional response of the cantilever under concentrated harmonic torsion is illustrated using similar 

graphs in Figure (4d) for four values of exciting frequencies 1 11.5 t  , 1 16.5 t  , 1 111.5 t  ,and

1 121.5 t  ,where 1 25.65t Hz  is the first natural torsional frequency. 

 
 

  

 
 

Figure (4): Bending and torsional responses of cantilever I-beam under concentrated harmonic forces 
 
 
11.  Conclusions 
 
Based on the variational form of the Hamilton principle, the dynamic equations of motion and related 
boundary conditions for doubly-symmetric thin-walled members subjected to general harmonic forces 
were derived. Exact expressions for the analytical closed-form solutions for transverse and torsional 
responses are derived for doubly symmetric cantilever and simply-supported beams. Comparison with 
established Abaqus beam and shell solutions exhibits the validity and exactness of the present analytical 
solutions. The closed form solution developed in the present study will be used to develop exact shape 
functions for the problem and a super-convergent finite element in the companion paper (Hjaji and 
Mohareb 2013b). 
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