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Abstract: Despite the rise in interest for surrogate safety analysis, little work has been done to 
understand and test the impact of the methods for motion prediction which are needed to identify whether 
two road users are on a collision course and to compute many surrogate safety indicators such as the 
time to collision (TTC). The default, unjustified method used in much of the literature is prediction at 
constant velocity. In this paper, a generic framework is presented to predict road users’ future positions 
depending on their current position and their choice of acceleration and direction. This results in the 
possibility of generating many predicted trajectories by sampling distributions of acceleration and 
direction. Two safety indicators, the TTC, and a new indicator measuring the probability that the road 
users attempting evasive actions fail to avoid the collision P(UAE), are computed over all predicted 
trajectories. These methods and indicators are illustrated on several video datasets containing safety 
critical interactions between road users. The evidence suggests that the prediction methods based on the 
use of a set of initial positions and on motion pattern matching seem to be the most robust. Another 
contribution is the integration of TTC values with P(UEA) to rank all interaction in a safety hierarchy. The 
last contribution of this work is to make all the code used for this paper available (the code as open 
source) to enable reproducibility and to start a collaborative effort to compare and improve the methods 
for surrogate safety analysis. 

1 INTRODUCTION 

Road safety is one of the most important social issues due to the multiple costs of accidents. The total 
social cost of road collision in Canada in 2004 was estimated at $62.7 billion yearly (about 4.9% of 
Canada’s 2004 Gross Domestic Product) (Vodden, Smith, Eaton, & Mayhew, 2007). The World Health 
Organization (WHO) estimated in 2009 road accidents to be ranked in the ninth place of leading causes 
of death and disability and predicted it will rise to the fifth place by 2030 (WHO, 2009). Safety manuals 
such as the manual of the World Road Association (Road Safety Manual, 2003) depend mainly on 
historical collision data obtained from police and hospital reports and on different types of statistical 
analysis to identify and understand the failures of the road system, and to propose corrective actions. 
This type of data has several shortcomings, such as the underreporting of some types of accidents, the 
lack of information in the reports and the relatively small number of events. Besides, the record is done 
after the accident happens and the analyst and decision maker must wait till a sufficient number of 
accidents is collected to analyze the collisions and to devise countermeasures. Therefore, collision-based 
safety analysis is a reactive approach and the existing safety problem may only be remedied after the 
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materialization of the induced social cost. These limitations have lead researchers to search for new 
methods to perform road safety diagnosis with higher confidence and in a proactive manner.  
One such promising approach relies on the observation of “unsafe” traffic events without a collision, often 
called near misses or conflicts. Such types of analyses have been developed in several countries since at 
least the late 1960s and are now better known as surrogate safety analysis. A key defining concept of 
conflicts and, it can be argued, of all safety relevant traffic events, is the collision course, i.e. a situation in 
which two road users would collide if their movements remain unchanged (taken from the conflict 
definition in (Hydén & Amundsen, 1977)). This requires specifying a method to predict road users’ 
motions in order to evaluate if they are on a collision course, and to measure several surrogate safety 
indicators such as the time to collision (TTC). Most analyses rely on the rarely specified or justified 
method of extrapolation at constant velocity, while several possible paths may in general lead road users 
to collide. This uncertainty in motion prediction is the result of the following factors:  

• unobserved variables, e.g. the characteristics of the driver and the vehicle (if any), including the 

driving skills and ability to perform an evasive action, the awareness of the road users of each 

other and their environment; 

• the stochastic nature of predicting the future given the current state of the system, e.g. the 
variability of motion choices (small variations in speed and direction), the complexity of all the 
road users’ interactions; 

• measurement uncertainty, depending on the accuracy of the sensing technology. 
This work builds on previous work (Saunier, Sayed, & Ismail, 2010) to develop a consistent and generic 
framework for motion prediction to measure the safety of road users’ interactions. Road user trajectories 
are extracted using a custom open source video tracking tool from video data recorded with a fixed 
camera (Saunier, 2012). This paper presents the following contributions: 

1. an investigation of different motion prediction methods to evaluate whether two road users are 
on a collision course and to compute several safety indicators; 

2. a measure of the probability of unsuccessful evasive action P(UEA),  
3. the study of the TTC and P(UEA) indicators and their distribution in a set of interactions with and 

without a collision; 
4. an open source software implementation (Saunier, 2012) of the proposed methods and an 

accompanying website with a sample of the data and step by step instructions to encourage 
adoption and further development. 

The remainder of this paper is organized as follows: the review of related work, the presentation of the 
proposed method, the experimental results on a large number of real cases, the discussion of the results 
and the conclusion.  

2 RELATED WORK 

2.1 Surrogate Safety Analysis 

There is a large and growing body of literature on methods for surrogate safety analysis. The best known 
approaches are the Traffic Conflict Techniques (TCTs), first proposed in the late 1960s in (Perkins & 
Harris, 1967). TCTs are methods to collect traffic conflicts, to evaluate their proximity to a potential 
collision, and to interpret this data for a safety diagnosis. The widely accepted definition of a conflict is “an 
observable situation in which two or more road users approach each other in time and space to such an 
extent that there is a risk of collision if their movements remain unchanged” (Hydén & Amundsen, 1977). 
As argued in the introduction, a traffic conflict thus implies that road users are on a collision course, which 
depends itself on a method for motion prediction. Although prediction at constant velocity is the most 
common, often implicit, method in the literature, various methods may be applied to represent uncertainty 
in future motion. This topic is discussed at length in the robotics literature for path planning, with 
applications to assisted or autonomous vehicles (see (Mohamed & Saunier, 2013)).  
For surrogate safety analysis to be objective, a number of quantitative safety indicators have been 
proposed in the literature to measure the proximity to a potential collision, or probability of collision, and 
the severity of the potential collision. The general term safety indicator is used in this paper to avoid 
confusion. Further work is required to validate how the indicators may be interpreted. TTC is the best 
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known of these indicators. It is defined for a given motion prediction method as the time required for two 
vehicles to collide following the predicted trajectories. If several predicted trajectories are available, with 
corresponding probabilities, the expected TTC can be computed (Saunier, Sayed, & Ismail, 2010). Many 
other conflict indicators have been presented over the years and the readers are referred to (Laureshyn, 
2010), (Tarko, Davis, Saunier, Sayed, & Washington, 2009), (Archer, 2005), and (Ismail, 2010) for more 
details. 

2.2 Motion Prediction and Collision Avoidance 

The choice of a method for motion prediction is essential to evaluate whether road users are on a 
collision course and to compute several safety indicators. Such methods are very similar to navigation 
and path planning in robotics, where collisions should be predicted and avoided. The difference is that 
robots know their goals, in particular places to reach, and can plan accordingly, while the analysis of road 
user interactions based on exterior observations does generally not have access to their internal state 
and goals. Nevertheless, path planning requires taking into account all obstacles and the movement of all 
other moving objects, i.e. it relies on motion prediction methods for the assessment of the safety of 
planned movements, just as surrogate safety analysis.  
The early work of (Zhu, 1990) describes three types of motion prediction models:  

1. the constant velocity model: it assumes that the object moves with no change in speed nor 

direction; 

2. the random motion model: it assumes that acceleration changes according to probability 

distribution functions such as a Gaussian or a uniform distribution;  

3. the intentional motion model: the objects move in a scheduled way (e.g. an object moves 

towards a specific goal and/or seek to avoid collision).  

These models fall into two categories, the deterministic and stochastic motion prediction approaches 
(Eidehall & Petersson, 2008): 

• Deterministic motion prediction consists in predicting a single future trajectory for each object. 

The constant velocity model is one such method, choosing the most probable trajectory among 

several alternatives is another. The former approach has been the default, sometimes implicit, 

method used to compute several safety indicators such as the TTC (Road Safety Manual, 

2003), (Cunto, 2008), (Laureshyn, 2010), (Ismail, 2010), (Hydén, 1996)) 

• Stochastic motion prediction relies on taking many different scenarios into account. With the 

rise of computer power, this approach is becoming more manageable and therefore more 

popular. In robotics, while the state and goals of the robot are known, the movement of other 

objects is usually modeled stochastically (Thrun, Burgard, & Fox, 2005). There are several 

stochastic motion prediction methods, among which one can cite: vehicle motion model using 

Monte Carlo simulation (Eidehall & Petersson, 2008), (Broadhurst, Baker, & Kanade, 2005), 

(Danielsson, Petersson, & Eidehall, 2007), reachable sets (Althoff, Stursberg, & Buss, 2008), 

Gaussian processes (Laugier, et al., 2011), and trajectory learning (Saunier, Sayed, & Ismail, 

2010), (Bennewitz, Burgard, Cielniak, & Thrun, 2005), (Hu, Xiao, Xie, & Tan, 2004), and (Morris 

& Trivedi, 2011) 

A literature review of the research on motion prediction, in particular from the field of robotics where 
motion prediction for collision avoidance is an important and well-researched topic; was summed up in 
previous work (Mohamed & Saunier, 2013). 

3 METHODOLOGY 

The main objective of this work is to investigate different methods for motion prediction to predict potential 
collision points and compute several safety indicators. This is tested on real cases of vehicle interactions: 
conflicts and collisions. A choice was made to focus in the present work on trajectories to represent 
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motions, since road user data is provided in the same format by the video analysis tool. The general 
approach follows four steps:  

1. The trajectories of each road users are extracted from video recordings. The video analysis tool 

relies on feature-based tracking (Saunier & Sayed, 2006) and is freely available as open source 

software (Saunier, 2012). 

2. For each interaction, defined as an event in which two road users are close enough, different 

motion prediction methods are used to predict the road users’ trajectories.  

3. At each instant, two predicted trajectories for the two road users may have three outcomes: no 

intersection or an intersection that can be either a crossing zone or a collision point. A crossing 

zone is a location in which two trajectories intersect each other. A collision point is a crossing 

zone that the road users are predicted to reach at the same time.  

4. Two safety indicators are computed: the TTC for each collision point and the probability of 

unsuccessful evasive action P(UEA) (the predicted PET (pPET) for each crossing zone can also 

be computed, see (Mohamed & Saunier, 2013)).  

3.1 Motion Prediction Methods 

The road users’ predicted trajectories are determined by their current state and the chosen control input. 
Similarly to (Broadhurst, Baker, & Kanade, 2005), the current state at t0 is represented by the state 
S(t0)=(x(t0),y(t0),v(t0),θ(t0)) where (x(t0),y(t0)) represents the position vector (if an object is simply 
represented by its centroid) and (v(t0),θ(t0)) are the norm and angle of the velocity vector (vx(t0), vy(t0)). 
The control input I(t0) reflects the action undertaken by the road user behaviour at t0, such as 
acceleration, steering, etc. The I(t0) vector can be written as (a(t0),∆θ(t0)) with a(t0) the acceleration or 
braking and ∆θ(t0) the change in the road user orientation both chosen by the road user at t0. ∆θ(t) can be 
computed as a function of the steering angle φ(t), the wheelbase L and the speed v(t) in case of a vehicle 
as follows:  

 [1]       Δθ(t) = �(�)
	 sin(φ(t)) 

The general formula used to compute iteratively the future positions at each time step � ≥ ��, where t is 
discretized at regular intervals ∆t, is: 

 [2]      ��(� + 1)�(� + 1)� = ��(�)�(�)� +	 �
��(� + 1)
��(� + 1)�		; where ���(� + 1)��(� + 1)� = 	 �

(�(�) + �(�)) cos(�(�) + ��(�))
(�(�) + �(�)) sin(�(�) + ��(�))� 

For realistic results, the speed is bounded by 0 and a maximum value vmax (i.e. v(t+1) is the minimum of 
vmax and v(t)+a(t)). This model is generic and can represent complex motions, by having varying control 
inputs I(t) at future time steps � ≥ ��. Four methods are considered in this work to predict possible 
trajectories to evaluate whether road users are on a collision course or not at t0: 

1. constant velocity (CV): only one predicted trajectory with I(t)=(0,0) for all � ≥ ��; 

2. normal adaptation (NAS): in reality, road users make, consciously or not, small speed and 

steering adaptation, even when following a straight traffic lane. Such a trajectory can be 

predicted by drawing the acceleration and orientation change a(t) and ∆θ(t) randomly and 

independently at each step � ≥ ��; 

3. set of initial positions (SP): if the road user position is represented by a set of positions 

instead of only its centroid, these can be used as initial position for predicted trajectories. For 

simplicity and faster computation, prediction is done at constant velocity for each initial position. 

4. motion pattern matching (MPM): current road user motion is matched to prototype trajectories 

representing the main motion patterns at a location. The predicted trajectories are the matched 

prototypes resampled based on the current road user speed (see previous work (Saunier, 

Sayed, & Ismail, 2010)). The advantage is that context, such as the road geometry is thus taken 

into account (most road users will not continue straight into a curb or a wall). 
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Several other methods could be used, but it was found that these four methods provide a variety of 
realistic predictions that can serve as a basis for investigation. Finding the collision points at each t0 
consists in predicting the trajectories for each pair of interacting road users over a fixed time horizon. A 
collision is identified if the distance between their predicted positions is below a threshold (1.8 m is used 
in this work as this represents the typical width of a car). The time step at which this condition is met is the 
TTC. Assumptions are made for reasonable distributions of control input for normal adaptation method. 
Information on this topic is limited in the literature. In (Hydén, 1996), threshold on the deceleration-to-
safety safety indicator are proposed to measure the conflict severity. Since braking in the range [0,-1m/s

2
] 

and [-1m/s
2
,-2m/s

2
] was considered to require respectively only “normal adaptation” and a “reaction”, the 

range of [-2 m/s
2
,2 m/s

2
] was chosen for acceleration in this work. The range [-0.2 rad/s, 0.2 rad/s] was 

chosen for ∆θ(t) after some trial and error. The triangular distribution was selected to represent lower 
probabilities of choosing the most extreme values, with 0 for the mode. These choices could easily be 
adjusted if better information becomes available. For each road user, N1 predicted trajectories are 
generated for the normal adaptation method.  

3.2 Safety Indicators 

At each time instant t0, a set of predicted trajectories for the two road users may generate a set of 
collision points with their associated TTC. Similarly to (Saunier, Sayed, & Ismail, 2010), the expected TTC 
is its expected value over all collision points. Note that this could be weighted by probabilities for each 
predicted trajectory; this is done in case of the MPM method and is implicitly taken into account for the 
normal adaptation method by the distribution of the control input.  
A new indicator was proposed in (Mohamed & Saunier, 2013) to distinguish between interactions where 
the TTC may be the same but the spaces of possible evasive actions that can be attempted by the road 
users are different. This can be characterized by sampling through the space of possible evasive action 
and computing the probability of collision as the number of predicted collisions divided by the total 
number of predicted situations (i.e. the product of the numbers of predicted trajectories of the two road 
users). This is the probability of unsuccessful evasive action P(UEA) and can be computed based on 
various motion prediction methods. Two methods are used in this work: 

5. evasive action sampling (EAS): N2 predicted trajectories are generated by randomly drawing 

a constant control input that is applied at each future step � ≥ ��; 

6. set of initial positions (EASP): the first method of evasive action sampling is applied to a set 

of initial positions for each road user (N3 trajectories are predicted for each initial position with a 

constant control input drawn randomly). 

The distribution for the control input is also triangular with 0 for the mode. The range is taken from 
(Broadhurst, Baker, & Kanade, 2005) which reports that for a Lexus LS430 at below 60 mph, steering 
angle varied from -0.5 rad to 0.5 rad and the acceleration varied from -9.1 m/sec

2
 to 4.3 m/sec

2
. An open 

source library has been developed to support these computations and to enable their replication by other 
researchers (Saunier, 2012). 

4 EXPERIMENTAL STUDY OF COLLISIONS AND CONFLICTS 

4.1 Dataset 

To demonstrate, illustrate and evaluate the proposed approach and indicators, a large set of case studies 
extracted from video recordings was used. The dataset has been used in previous work (Saunier, Sayed, 
& Ismail, 2010). It contains a large number of interactions: 295 cases: 82 collision cases and 213 conflict 
cases, for which the vehicle trajectories are extracted using the algorithm presented in (Saunier & Sayed, 
2006). The accuracy of the extracted trajectories is sufficient for our purpose.  

4.2 Results 

For this analysis, the first four methods for motion prediction are applied to compute the TTC indicator. 
The other two motion prediction methods are used to compute P(UEA). For the methods relying on a set 
of initial positions, the initial positions are the positions of features that are detected and tracked on a road 
user by the computer vision algorithm (Saunier & Sayed, 2006), which can be seen as a distribution over 
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the actual position of the road user, or as a proxy for its actual volume. For all the methods that require to 
set a number of trajectories (for sampling the control inputs), the following values were chosen: N1=100 
for normal adaptation, N2=100 for evasive action sampling and N3=10 for evasive action sampling with a 
set of initial positions. The scripts that generated all the presented results (except the MPM method) 
along with a sample of the data are available on the website 
http://nicolas.saunier.confins.net/data/mohamed13trb.html to enable other researchers to replicate and 
build on the proposed approach.  

   

   

(a) Collisions case studies 

   

   

(b) Conflicts case studies 

Figure 1 Plots of the two safety indicators and the collision points for the various motion prediction 
methods for samples of collisions (top) and conflicts (bottom) 
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The safety indicators and the collision point distributions are plotted for a sample of interactions in Figure 
1 Error! Reference source not found.. The road user trajectories are overlaid over the collision points 
with a dot indicating their origin or first instant of detection, to provide the context of the interaction. 

4.2.1 Motion Prediction Methods 

It is noteworthy that all motion prediction methods result in similar measurements and that the main 
difference is the number of measurements for the TTC indicator (P(UEA) is different as its value is 0 if no 
collision point is predicted, while TTC is undefined in that case). Prediction at constant velocity (CV 
method) provides the smallest number of measurements for TTC, followed by the NAS method. 
Moreover, both of the MPM and SP methods provide the largest number of measurements in most cases 
and also provide the most dangerous (lowest) values for TTC indicator (see for example Figure 1). It was 
expected that motion prediction at constant velocity would provide the smallest number of measurements, 
which is a well-known shortcoming of that method (Laureshyn, 2010). This important characteristic is 
associated with robustness as measurements over longer periods of time should help better characterize 
the interactions over time and in terms of their overall safety, while a small number of data points provides 
a limited picture and are more subject to noise.  
A larger number of measurements seems to correspond to a larger number of collision points distributed 
over a larger region. As expected, the number of collision points predicted by the CV method is small and 
very concentrated around the actual point of intersection of the trajectories, specifically for straight 
trajectories. The collision points predicted by NAS method are more concentrated than the ones predicted 
by the SP method. This is also expected since normal adaptation simulates small deviations around a 
trajectory at constant velocity that are compensating each other since positive and negative values of 
control inputs can be drawn with equal probabilities. The MPM method predicts a number of collision 
points between the numbers respectively predicted by the CV and NAS methods.  

4.2.2 Safety Indicators 

This section discusses the most extreme values reached by the safety indicators, although the whole time 
series can and should also be studied and interpreted. Regarding the TTC indicator, the values should 
theoretically reach zero for the collision cases. As shown in  
Table 1, the minimum TTC (TTCmin) values of most collision cases (82 % in SP method and 62 % in MPM 
method of the cases) are between 0 and 0.5 s. The fact that 0 s is not always measured is related to 
video tracking (colliding road users are more difficult to track) and simplifications of the vehicle volume. 
Conversely, minimum TTC values are between 0 to 2.5 s for the conflict cases, with about 69 % (MPM 
method) and 68 % (SP method) between 0 and 1.5 s. Surprisingly, the highest share of TTCmin values 
computed using the SP method is between 0 to 0.5 s for the conflict cases (37 % of all cases), while it is 
between 0.5 to 1.0 s. when using the MPM method (34 %). The SP method provides lower TTCmin values 
than the MPM method, as well as fewer cases without any measurement at all (see the last column in  
Table 1). 

Table 1 : The distributions of TTCmin for all interactions for the SP and MPM prediction methods. 

0 -0.5 0.5-1 1-1.5 1.5-2 2-2.5 >2.5 None

collision 82% 15% 1% 0% 0% 0% 2%

conflict 37% 13% 18% 14% 7% 8% 3%

collision 62% 23% 4% 1% 0% 2% 7%

conflict 12% 34% 23% 10% 4% 2% 14%

TTC(sec)

SP

MPM

 
 

The second and new safety indicator P(UEA) provides mixed results (see Table 2 for the EAS method 
(EASP provides similar results that are not included in the paper)). For the collision cases, 41 % of the 
cases have maximum P(UEA) reach the highest values (from 0.8 to 1.0), while several cases have 
maximum P(UEA) inferior to 0.2, in which cases the driver has the opportunity to avoid the collision. For 
the conflict cases, most (60%) of the maximum P(UEA) values are less than 0.2, followed by the 0.2 to 
0.4 range (24 %). The remaining values are distributed in the other intervals with only 3 % reaching the 
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highest maximum P(UEA). This is expected as road users would have more possibilities to avoid a 
collision all along their interaction without a collision.  

Table 2 : The distribution of maximum P(UEA) for all interactions for the EAS prediction method. 

0.8-1.0 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2 None

collision 41% 15% 7% 20% 17% 0%

conflict 3% 3% 9% 24% 60% 0%

P(UEA)

EAS

 
Analyzing the TTC and P(UEA) curves together shows that the highest value of P(UEA) is reached 
usually at the time the TTC is minimum in most cases (in the range of ± 0.5 s.) for MPM and EAS 
methods (186 cases (63 % of cases)), while in only 127 cases (43 % of cases) for SP and EAS methods 
(see Figure 2). In some cases, the highest value of P(UEA) is reached up to a second (tolerance ± 0.5 s) 
before TTC reaches its minimum value. A possible explanation is that it is related to the point 
approximation of the road user actual volumes: that the predicted trajectories may “miss” each other 
when very close, all the more as the position of one road user is often past the intersection of the two 
trajectories.  
 

 
Figure 2 : The time difference between the instants at which respectively maximum P(UEA) and TTCmin 

are reached (positive sign means TTCmin occurred later). 

It should nevertheless be remembered that this indicator is designed to be complementary to the TTC, in 
particular to measure the options the road users have to avoid each other. Therefore, the distribution of 
TTC and P(UEA) values are studied and summarized in Figure 3, presenting only the most promising 
methods, SP and MPM with EAS. The results seem logical. For collision cases, most cases are 
concentrated primarily around the most severe indicator values, i.e. the lowest values of TTCmin and the 
highest values of maximum P(UEA), followed by a smaller cluster around the lowest TTCmin values with 
smaller maximum P(UEA) values (between 0.0 and 0.4). On the other hand, the distributions of the 
extreme indicators values are different for conflicts. For the SP method, the majority of conflict cases have 
TTCmin values in the 0.0 - 0.5 s range, and followed by the 1.5 - 2.0 s range with most maximum P(UEA) 
values below 0.2 for both ranges. For the MPM method, the largest group of conflicts has TTCmin values 
between 0.5 and 1.5 s. with maximum P(UEA) values below 0.2, followed by a smaller group with TTCmin 
values between 0.5 and 1.0 s and maximum P(UEA) values in the 0.2 - 0.4 range. In addition, it is notable 
that the upper right triangle in Figure 3 is essentially empty. This is expected as there is a relationship 
between TTCmin and maximum P(UEA): when TTCmin is large, road users have a large number of choices 
of evasive actions to avoid a collision, which corresponds to small maximum P(UEA) values. Overall, 
considering both TTCmin and maximum P(UEA) provides a promising method to rank all interactions with 
respect to their proximity to a potential collision, i.e. in a safety hierarchy. 
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P(UEA)
0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 >2.5 None

P(UEA)
0 -0.5 0.5-1 1-1.5 1.5-2 2-2.5 >2.5 None

0.8-1.0 31 3 0 0 0 0 0 0.8-1.0 29 2 0 0 0 0 3

0.6-0.8 9 3 0 0 0 0 0 0.6-0.8 12 0 0 0 0 0 0

0.4-0.6 5 1 0 0 0 0 0 0.4-0.6 3 3 0 0 0 0 0

0.2-0.4 12 4 0 0 0 0 0 0.2-0.4 5 10 0 0 0 0 1

0-0.2 10 1 1 0 0 0 2 0-0.2 2 4 3 1 0 2 2

P(UEA)
0 -0.5 0.5-1 1-1.5 1.5-2 2-2.5 >2.5 None

P(UEA)
0 -0.5 0.5-1 1-1.5 1.5-2 2-2.5 >2.5 None

0.8-1.0 6 1 0 0 0 0 0 0.8-1.0 4 2 0 0 0 0 1

0.6-0.8 5 2 0 0 0 0 0 0.6-0.8 4 2 0 0 0 0 1

0.4-0.6 9 9 2 0 0 0 0 0.4-0.6 8 11 0 0 0 0 1

0.2-0.4 20 5 18 5 3 0 0 0.2-0.4 3 25 13 1 0 0 9

0-0.2 38 11 19 24 12 17 7 0-0.2 7 33 36 21 8 5 18

(a) collisions cases (SP & EAS prediction methods) (b) collisions cases (MPM & EAS prediction methods)

(c) conflicts cases (SP & EAS prediction methods) (d) conflicts cases (MPM & EAS prediction methods)

TTC(S)  TTC(S)  

TTC(S)  TTC(S)  

Figure 3 : Joint distribution of TTC and P(UEA) values for all interactions (collisions and conflicts) 

5 CONCLUSION 

This research is to the authors’ knowledge the first to deal with various motion prediction methods for 
surrogate safety analysis. Following a previous paper that reviewed relevant methods from other fields 
(Mohamed & Saunier, 2013) in particular robotics, it describes a generic framework for motion prediction 
using sets of predicted trajectories. Six motion prediction methods are used to simulate future trajectories, 
whether the road users attempt evasive actions or not. This paper has tested a new indicator on several 
real world cases that measures the probability that the road users attempting evasive actions fail to avoid 
the collision. The methods are applied to a large number of real world case studies and the indicators are 
discussed in detail. An important criterion is the ability of the computed indicators to represent their 
intended measurements robustly. The motion prediction method based on a set of initial positions and 
motion pattern matching produce the most robust indicator computations since they provide the largest 
number of measurements. The new indicator P(UEA) shows some complementary features to the well-
known TTC. The results seem to indicate that their integration may be used to rank all interactions 
according to their proximity to a potential collision.  
Motion prediction methods depend on several parameters, which should be better estimated from large 
datasets of observations (e.g. evasive action for various categories of interactions). This will allow 
modelling more closely road user behaviour, for example by using better distributions of control inputs 
selected by road users. More work needs also to be done to continue validating the indicators.  
Finally, this work is unique in the field of road safety analysis in sharing data and methods (the software 
code is released as open source) to enable scientific reproducibility and encourage more collaboration in 
this area. It is believed that these tools can benefit other researchers and that the area of surrogate safety 
analysis, with its many methods and indicators, can only progress if they can be compared by building 
upon each other’s work.  
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