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Abstract: In this paper two Bayesian methods for the development of accident prediction models are 
compared: the well acknowledged Empirical Bayes method and a recently developed method based on 
Bayesian Probabilistic Networks. Brief descriptions of the two methods are provided and their 
commonalities, differences, advantages and disadvantages are discussed. Both methods can be used to 
develop models for a multivariate prediction of accident events and can be included into modern road risk 
management systems, e.g. road safety impact assessments or road safety audits. It is shown that, 
although both methods result in models that can be used to predict the numbers of accident events, the 
models developed using the Bayesian Probabilistic Networks method have a better correlation with the 
actual data than the models developed using the Empirical Bayes method; measured through the higher 
values (approximately 10%) of the correlation coefficients for most of the model response variables and 
the reduced bias of the results. 

1 Introduction 

The influence of road design parameters and traffic properties on the occurrence of accident events and 
the development of road accident prediction models are important aspects of road management and are 
therefore research areas of considerable interest. Numerous studies have been performed to identify the 
most important risk indicating variables (RIVs) and to describe the relationships between these RIVs and 
the occurrence of road accidents. Comprehensive overviews of the different methods used for predicting 
accident events on roads can be found in Hauer (2009), Elvik (2011), Lord and Mannering (2010) and 
Savolainen et al. (2011). Since road accidents are relatively rare events when compared to the amount of 
vehicles on the roads, considerable uncertainty is often associated with the number of accident events 
predicted based on observed data. The capability of a methodology to deal with this uncertainty in the 
development of accident prediction models is of high importance to gain reliable model results.  
 
In Hauer et al. (2002) it is shown that methods that are based only on counts of accident events may lead 
to inaccurate modelling results, either due to a large variance in the counts (over-dispersion) or due to a 
systematic bias in the predictions (regression-to-the-mean). These weaknesses can be overcome by 
using methods that use a combination of theoretical prediction models and real observations. In this 
paper two such methods are compared, the so-called Empirical Bayes (EB) method and a recently 
developed Bayesian Probabilistic Network (BPN) method. Brief descriptions of the methods, outlines of 
their main commonalities and differences and their main advantages and disadvantages, are given. The 
performance of the two methods is evaluated by comparing the predicted numbers of accident events 
with the actual observed numbers on road sections the data of which has not been used for model 
development. 
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2 Methods 

2.1 Homogenous Segments and Multivariate Poisson-lognormal Regression Analysis 

Both methods are based on defined sets of RIVs (model input) and model response variables (MRVs) 
(model output). The RIVs are observable road and traffic characteristics that are considered to influence 
the conditional occurrence probability of the MRVs. The RIVs and the MRVs are defined for model 
development, from case to case, taking into consideration the problem to be investigated and the 
availability of data.  
 
With both methods the investigated road network is sub-divided into homogeneous segments, for each of 
which it can be assumed that the values of all RIVs to be included in the accident prediction models are 
constant, and therefore the occurrence probabilities of the MRVs over the length of the homogeneous 
segment can be considered to be uniform. When homogeneous segments are used, generic accident risk 
models are first developed based on data for the entire network and are only made specific when the 
values of the RIVs for the homogeneous segments are used as model input.  
 
Both methods are applied by using multivariate Poisson-lognormal regression analysis (subsequently 
only referred to as regression analysis) to establish prior prediction models, i.e. to describe the linear 
causal relationships between the RIVs and the MRVs, which are often referred to as safety performance 
functions. The explanatory variables are the RIVs and the dependent variables are the multidimensional 
MRVs representing the expected accident event rates. The structural component of the proposed 
regression model is: 
 

[1]    ln       expE E          Λ X BX Ξ Λ X ΒX Ξ  

 
where X  is the design-matrix of explanatory risk indicating variables, Λ  is the matrix of the model 
response variables (accident rates),  
Β  the matrix of regression coefficients and Ξ  the matrix of the error terms.  
 
The values of the MRVs are, however, not used directly. Instead, a gamma updating of the MRVs is 
performed with the assumption that the accident counts can be represented by a negative-binomial 
distribution. This is done: 

- to deal with accident counts that are characterised by over-dispersion, i.e. the variance is larger 
than the mean, which is normally the case (Hauer 2001) 

- to dilute the effects of individual outliers of exceedingly high counts through an embedded 
weighting process, and  

- to avoid the preponderance of zero values;  
The latter of which is something that better reflects the fact that accident frequencies are larger than zero, 
even if there are no observations on one homogeneous segment over the time of observation, which is 
often triggered by short observation periods or short segment lengths (Deublein et al. 2012).  
 
A negative binomial distribution is a mixture of a Poisson distribution and the natural conjugate gamma 

distribution. The first with parameter ki
 
describing the probability of having a defined number of accident 

events on one particular homogeneous segment over a defined period of time and the latter describing 

the parameter ki . ki
 
in this case is the mean frequency of accident events, given by: 

 

[2] ki ki i     

 
where: 

ki  is the gamma-updated accident rates (accidents per million vehicle kilometres per year) 

i  is the exposure (number of vehicles per kilometre and year) of the homogenous segments 
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k  indicates the type of accident 
i  indicates the homogeneous segment  
 
The gamma updating of the accident rates is done by updating the prior parameters of the gamma 
distribution according to (Gelman et al. 2004) as: 
 

[3]      and      ki ki ki i i iy              

 
where: 

ki  is the posterior shape (dispersion) parameter of the gamma distribution and 

i  is the posterior inverse scale parameter of the gamma distribution. 

kiy  and iv  are the observed accident counts and observed values of exposure, respectively.  

ki  and i   are the prior parameters of the gamma distribution, assessed as 

[4] ki k i      with i i i i
il

        .  

where: 

i  is the weight calculated as the fraction of the weighting factor   and the individual homogeneous 

segment length il . 

   is a weighting factor attributed to information about the prior gamma parameter i . It is used to 

take into account the time period of observations based on which the prior information has been 
gathered, experts experience and appraisal of the quality of the prior information.  

k   are the averaged background accident rates of the MRVs determined based on analysis of 

available historical data.  
 

2.2 Bayesian Probabilistic Network Method 

Recent research on modelling the expected number accident events by means of Bayesian Probabilistic 
Networks includes the work done by Davis and Pei (2003), Marsh and Bearfield (2004), Ozbay and 
Noyan (2006) and Simoncic (2004), de Oña et al. (2011), Karwa et al. (2011), Schubert et al. (2011) and 
Hossain and Muromachi (2012). The BPN method discussed here (Deublein et al. 2012) is similar to 
those developed elsewhere in that Bayesian inference and updating algorithms are used to develop 
models to predict the number of accident events. It is, however, different in that it uses both: a) a 
hierarchical regression analysis and b) BPNs that take into account aleatory and epistemic uncertainties, 
as well as non-linear dependencies. This combination makes it possible to deal with a very general 
dependency structure (low individual correlations between RIVs and MRVs) in the data as well as non-
linear causal relationships. Based on the results of the regression analysis (probability density functions 
of the regression coefficients and the error terms) the prior predictive distributions of the MRVs are 
assessed, the prior BPN is established, and parameter learning is performed by using an parameter 
learning algorithm (EM-algorithm) to iteratively update the internal causal interrelationships and 
dependencies based on observed data, to obtain the posterior BPN. In the creation of the posterior BPN, 
the purely empirical regression model based probabilities and linear relationships in the prior BPN are 
replaced by observation based posterior probabilities and non-linear relationships. By determining the 

posterior BPN the mean values of the posterior predictive probability density function of the MRVs ki  are 

also determined. These are multiplied with the exposures of the homogeneous segments iv  to obtain the 

parameter of the Poisson distribution ki  which is used to estimate the expected number of road accident 

events ˆkiy  over a defined period of time. For more information about BPNs reference is given in Cowell 

(1999), Pelikan (2005), Jensen and Nielsen (2007) and Kjaerulff and Madsen (2008).  
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2.3 Empirical Bayes Method 

The EB method can be considered as today’s most common  state-of-the-art method for the development 
of accident prediction models, and considerable research has been conducted using it, including that by 
Hauer (Hauer 1992, 2001, 2010), Carlin and Louis (1997), Persaud et al. (1999, 2010), Hauer et al. 
(2002), Carriquiry and Pawlovich (2005) and Elvik (2007, 2008). The theoretical modelling in the EB 
method consists of two key components:  
- the determination of the safety performance functions based on the regression analysis (as mentioned 
in section 2.1) and  
- the estimation of the values of the over-dispersion parameters as the reciprocal value of the distribution 
(shape-) parameter  , which are estimated by fitting a negative-binomial distribution to the observed 
numbers of accident events (Hauer 2001). Based on the estimates of the safety performance functions 

k̂i , the over-dispersion parameters ki  and the observed counts of accident events kiy  on one specific 

homogeneous segment i  the expected numbers  E   of the accident events ˆki  are calculated as  

[5]  ˆ ˆˆ , 1ki ki ki ki ki ki kiE y w w y             

with  

[6] 
 

1
ˆ1

ki

ki ki

w
 




  

where 

the weight kiw  is assumed to be gamma distributed with shape parameter 1ki ki  . It determines the 

weight given to the theoretically predicted number of accident events taking into consideration the number 
of observed accidents. 
Using the EB method there are two types of over-dispersion parameters, individual over-dispersion 

parameters ki  of the individual homogeneous segments, and overall over-dispersion parameter k  for 

the entire investigated network. The latter is related to the former as a function of the length of the 
homogeneous segments (Hauer 2001) as:  
 

[7] ki k il
   .  

 
where 
  is the weighting exponent and has a value between zero and one. It’s value is selected to ensure that 
homogeneous segments are weighted as a function of their number of observed accident events (Hauer 
2001). More information about the EB method can be found in (Elvik 2008) (Hauer 1992) (Hauer 2001) 
(Hauer et al. 2002) (Persaud et al. 1999) and (Persaud et al. 2010). 

3 Example 

3.1 Description 

To compare the BPN and the EM method, both were used to develop accident prediction models for 
Austrian rural roads with lanes physically separated based on driving direction. The models were then 
used to predict the occurrence of accidents on homogeneous segments between 2004 and 2010 where it 
was assumed no data was available. The results were then compared with the observed number of 
accidents for the same period of time. The BPN and the EB methods described in sections 2.2 and 2.3 
were used. The example related issues are explained in the following sections.  
The cumulative length of the investigated roads and the observed numbers of the different accident 
events between 2004 and 2010 are given in Table 1, for the entire data set, the development dataset and 
the test dataset. The development dataset and the test dataset are subsets of the entire dataset where 
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the former was used for model developments (about 75% of the entire data), and the latter was used to 
test the models (about 25% of the entire data). The road segments in the development and test dataset 
were randomly selected. The entire road network was sub-divided into n=6’932 homogeneous segments. 
 

Table 1: Length of investigated roads and numbers of observed accident events [2004-2010] 

 length IAC LINJ SINJ FAT 
[km] [-] [-] [-] [-] 

entire dataset 3’642 12’892 14’482 5’861 529 
development dataset 2’952 10’282 11’460 4’677 409 

test dataset 690 2’610 3’022 1’184 120 
 
The RIVs selected include six road-specific design variables and two traffic variables (Table 2). 

Table 2: Risk Indicating Variables (RIVs) 

RIV Definition Values Unit
CHAR Different types of road sections, namely 1) exit corridors, 2) 

intersections, 3) tunnels and 4) normal/open roads. Exit corridors and 
intersections are defined over a range of one kilometre including a 500 
m section before and after their centroid. 

(1, 2,3, 4)  [ ]

AADT Annual average daily traffic pro driving direction.  4(1,2,...,10) 10  [ ]veh d  

HGV Percentage of heavy good vehicles with respect to the AADT. (5,10,...,30)  [%]  

BEND Horizontal curvature; integer variable having values between zero 
(straight road) and ten (very high curvature), determined as the fraction 
of the sum of the lengths of ten subsequent 50m road sections divided 
by the length of the straight distance between the starting point of the 
first and end point of the tenth section. Data of a geographical 
information system (GIS) was used for assessment of the bend factor. 

(0, 2,...,10)  [ ]

SLP Percentage of the upwards or downwards gradient (slope). ( 6, 4,..., 0,..., 6)   [%]  

LAN Number of driving lanes per direction. (1, 2,3, 4)  [ ]
SPD Signalized speed limit. (80,90,...,130)  [ ]km h  

EML Existence of emergency lanes, binary variable (0 ,1 )no yes   [ ]

Four MRVs were selected taking into consideration the definitions of accidents and injury levels in 
accordance with §84 of the Austrian Penal Code (Bundesrepublik Oesterreich 2012) (Table 3). The MRVs 
are the occurrence rates of the accident events being the observed numbers of accident events on a 
homogeneous segment divided by its exposure. The exposure is the product of the number of vehicles 
(veh) with the length of the homogeneous segments (km) and with the observation period (years) having 
the unit of million vehicle kilometres per year ( mvkm ). 

Table 3: Model Response Variables (MRVs) 

MRV Definition Values Unit
IAC Occurrence rates of all injury accidents, i.e. accident events 

where at least one vehicle is involved and at least one 
occupant becomes at least lightly injured.  

0.001 for  0 0.01

0.01   for  0.01 0.2

0.1     for  0.2 2

IAC

IAC

IAC





 
 
 

 
 IAC mvkm

 

LINJ Occurrence rates of light injured road users. A road user is 
considered to be lightly injured if the damage to his well-being 
lasts less than 25 days following the accident event.

0.001  for  0 0.01

0.01    for  0.01 0.2
LINJ

LINJ




 
 

  LINJ mvkm

 

SINJ Occurrence rates of severely injured road users. A road user is 
considered to be severely injured if the damage to his well-
being lasts more than 24 days following the accident.

0.001 for  0 0.01

0.01   for  0.01 0.2
SINJ

SINJ




 

 
  SINJ mvkm

 

FAT Occurrence rates of fatally injured road users. A road user is 
fatally injured when he has died within 30 days following the 
accident event as a consequence of accident induced injuries.

0.0001 for  0 0.001

0.001   for  0.001 0.02
FAT

FAT




 
 

  FAT mvkm
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3.2 Multivariate Poisson-Lognormal Regression Analysis 

The multivariate Poisson-Lognormal regression analysis (subsequently only referred to as regression 
analysis) was performed on the development dataset with the data of the homogeneous segments being 
weighted according to their individual exposure values. The regression coefficients were assessed by 
means of maximum likelihood estimation having different values for the different MRVs; simultaneously 
for all MRVs per road section type. Road section type is handled differently from the other MRVs as they 
are discrete, and fundamentally different, categories. The statistical significance of the results was tested 
using a Students t-test for the individual regression coefficients at a significance level of 0.05  .  
The dependent variables used for the regression analysis were the values of the gamma updated MRVs 
as described in paragraph 2.1. The parameters of the gamma distribution were quantified and updated for 
each homogeneous segment based on the background accident rates and the weighting factor   as 

given in Table 4. The values of the background accident rates and   were derived by using a non-linear 

generalized reduced gradient optimization algorithm objecting to minimize the difference between the 
sum of the regression model based accident predictions and the sum of the observed average accident 
events in the development dataset (Deublein et al. 2012). 

Table 4: Weighting factor and background rates for model development 

  
IAC  LINJ  SINJ  FAT  

[ ]   IAC mvkm   LINJ mvkm  SINJ mvkm  FAT mvkm

0.3 0.08764 0.09910 0.03705 0.00315 

Example safety performance functions for open roads and tunnels with respect to the RIV AADT are 
shown in Figure 1. It can be seen that the safety performance functions 

- of the injury accidents and light injuries on open roads are similar while the safety performance 
functions of the severe injuries and the fatalities are different than the safety performance functions of 
the injury accidents and light injuries.  

- vary considerably in shape and magnitude for open roads and tunnels. In terms of AADT the 
probability of injury accidents, light injuries and severe injuries in tunnels is considerably higher than 
for roads but the probability of fatalities is considerably lower (maximum occurrence rate of 0.0003 
fatalities per mvkm ); something which may be attributed to safety enhancing measures such as 
reduced speed limits, increased lane width, or clear signalization. 

Figure 1  Safety performance functions 
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3.3 Bayesian Probabilistic Network Method 

Both, the estimates of the regression coefficients as well as the distribution of the error term, were used to 
assess the prior predictive distribution of the MRVs for establishing the prior BPN. The open-source 
inference engine of the program GeNie 2.0 (Decision-Systems-Laboratory-Pittsburgh 2006) was applied 
to construct the network and to calculate the marginal probability distribution functions. The values of the 
continuously distributed MRVs were discretized to facilitate model development and parameter learning 
procedures. Structural learning was not applied in the current investigations since the causal relationships 
were evaluated and determined based on the outcomes of the regression analysis and based on expert 
judgement. In Figure 2 the structure of the established BPN is shown.  
Eight RIVs were chosen as the input nodes of the BPN. When nothing was known about the considered 
homogeneous segments default probabilities of the states of the RIVs were used as given in the bar 
charts of the parent nodes in Figure 2. The values of the bar charts correspond to the relative frequencies 
with which the values of the RIVs were observed in the development dataset. For model application, a 
particular homogeneous segment was then described by putting evidence in the different nodes of the 
RIVs by selecting the appropriate states (e. g. CHAR=4, AADT=40’000, HGV=12%, etc.). The four MRVs 
were taken as the output nodes of the BPN. All input nodes were connected to all output nodes by 
directed edges.  
 

Figure 2: Developed Bayesian Probabilistic Network 

 
Monte Carlo simulations of all regression coefficients and error terms were performed to establish the 
predictive probability density functions of the MRVs, and to extrapolate the information of the observed 
data into the entire modelling space in order to provide distributions of the MRVs also in those areas of 
the model space where no observations have been available. The simulations were done using the 
distributions of the regression coefficients and the covariance matrices of the error terms being assessed 
in the regression analysis.  
Parameter learning was then performed using an parameter learning algorithm (EM-algorithm) assuming 
a rather small value for the experience factor of e=0.1, i.e. this value gives almost no weight to the prior 
information and hence the posterior distribution has high weight and becomes very similar to the 
observed data. During the parameter learning process only the domains of the prior BPN were updated 
for which there were observations in the development dataset.  
 

3.4 Empirical Bayes Method 

The overall over-dispersion parameters were assessed as described in (Elvik 2008) based on the 
development dataset (Table 5). The values of the overall over-dispersion parameters are similar for all 
MRVs for exit corridors and open roads, except for fatalities. The much higher values for fatalities for exit 
corridors may be due to the very small number of fatalities observed and a high statistical uncertainty 
associated with these values (Deublein et al, 2012).  
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Table 5: Overall over-dispersion parameters 
 exit corridors intersections tunnels open roads 

injury accidents 2.4476 1.9379 4.5054 2.5312 

light injuries 2.2328 1.8623 4.1462 2.3217 

severe injuries 2.9240 3.2878 5.2546 2.8254 

fatalities 11.1127 16.2621 9.5581 5.1938 

The different overall over-dispersion parameters were taken into account for the assessment of the 
individual over-dispersion parameters of the homogeneous segments in the test dataset according to 
equation [7]. The exponent   can have values between zero (no influence of individual section length on 
over-dispersion parameter) and one (over-dispersion parameter is multiplied by the length of segment). A 
value of 0.8   was chosen to give not full but considerable influence of the segment length on the over-
dispersion parameter. Since it is assumed for the model evaluation that no information is available about 
accident events for the road segments in the test dataset, the updating was done using similar segments 
of the development dataset, i.e. homogeneous segments of the development dataset that have the same 
constant values of the RIVs as the homogeneous segments to be evaluated in the test dataset.  

3.5 Model Comparison 

The model predictions using the 
BPN and EB methods along with the 
number of observed accident events 
on the homogeneous segments of 
the test dataset are shown in Figure 
3 for injury accidents and light 
injuries. The regression lines are 
indicated through solid lines and the 
regression equations as well as the 
coefficients of determination (R2) and 
correlation (r) are provided for each. 
The dashed lines indicate (in 
average) perfect accordance 
between the model predictions and 
real observations. Regression lines 
above the dashed line indicate the 
model predictions in average to 
underestimate the real number of 
accident events, regression lines 
below the bisecting line indicate the 
model predictions in average to 
overestimate the real number of 
accident events. As can be seen 
both methods resulted in models 
that could be used to accurately 
predict the occurrence of injury 
accidents (the regression lines are 
very close to the dashed lines).  

The EB method, however, resulted in models that considerably underestimate the number of light injured 
road users (the regression line is much steeper than the dashed line). The BPN and EB methods resulted 
in models with values of the correlation coefficients of r=0.748 and r=0.663 for the prediction of injury 
accidents, respectively, i.e. an improvement of approximately 10%. A similar difference can also be 
observed for the prediction of lightly injured road users. Since the correlation coefficients for the prediction 
of severe injuries and fatalities are relatively low, i.e. r<0.50, only limited conclusions for the prediction of 
severe and fatal injury events can be made. The poor correlation is expected to be due the low 
occurrence frequencies of these two MRVs.  

Figure 3: Scatter plots of real observations and model predictions 
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One way to overcome this problem could be seen in the implementation of theoretical prediction models 
which are available in literature as results from other investigations on different (probably larger) datasets. 
For the BPN method it would be straightforward to implement a combination of data-based 
interrelationships between the RIVs and the MRVs and literature-based theoretical models and 
improvements in the predictive capabilities of severe injuries and fatalities are expected. The 
implementation of theoretical prediction models was beyond the scope of this work. 
Comparison of the predictions for injury accidents on the homogeneous segments of the test dataset 
resulting from the EB and BPN models (Figure 4) show that BPN models tend to provide more accurate 
(and higher) estimates than EB models (the regression line is below the dashed line). The value of the 
correlation coefficient between the predictions made using the BPN and the EB models is r=0.883. 

4 Conclusions 

In this paper, the ability of the using the Bayesian 
Probabilistic Networks method and the Empirical Bayes 
method to develop models that result in accurate prediction 
of accident events were compared. In both methods 
Bayesian inference and updating algorithms are used and 
both combine theoretical safety performance functions with 
real observations of accident events. This is done by using a 
multivariate Poisson-lognormal regression analysis for the 
assessment of prior inferences that are then used to update 
the theoretical relationships with information of real 
observations.  
The model response variables used for the comparison were 
the numbers of injury accident events and the number of 
injured road users having no more than light injuries, severe 
injuries and fatal injuries. The risk indicating variables were 
selected taking into consideration both road design and 
traffic parameters. The comparison was made by comparing 
the predicted number of accident related events with the 
observed number of accident related events and by 
comparing the predicted numbers of accident related events 
using the two models. 
 
It was found that:  

- the models developed using both methods showed good agreement between the predicted and 
observed numbers of accident related events, i.e. both models resulted in a good correlation 
between the predicted and observed numbers of the values of the model response variables and 
there was a good correlation between the predicted values of both models.  

- the models developed using the Bayesian Probabilistic Network method gave slightly more 
accurate estimates of the number of accident related events, i.e. the values of the correlation 
coefficients of the Bayesian Probabilistic Network models were approximately 10% higher than 
those of the Empirical Bayes models.  

Bayesian Probabilistic Network models, once developed, can readily be implemented into Geographic 
Information Systems (GIS) for geo-referenced road safety assessment and accident risk based decision 
making.  
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