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Abstract: Productivity forecasting of construction operations has gained tremendous momentum in both
the construction industry and academia. Many of the developed models utilize clustering methods in order
to recognize existing hidden patterns among the historical data and improve the modelling performance
by mimicking these patterns. It is shown that the improper determination of the number of clusters in such
models can noticeably distort their fitness, which is not treated well in the literature. This paper scrutinizes
the impacts and benefits of optimizing the number of clusters in productivity forecasting models. To this
end, Subtractive Clustering is applied to optimize the clustering performed by K-Means method. A set of
internal indices that consider Separation and Compactness of the resulted clusters are used to validate
the method. The proposed technique is further investigated for a Neural-Network-Driven Fuzzy
Reasoning (NNDFR) model developed to simulate a construction operation, in which several qualitative
and quantitative factors are considered. Empirical results show that the model performance, in terms of
Mean Squared Error (MSE), improves by up to 60 percent when the optimal number of clusters is
determined using the presented technique. The developed technique benefits researchers and
practitioners to improve the accuracy of modelling in productivity estimation based on a set of
construction historical data.

1 Introduction

Fuzzy models and neural network systems have provided an effective tool for addressing uncertainty in
decision-making. Uncertainty, as the ineradicable nature of construction projects convinced researchers
to approach such intelligent systems. In the past few years, these systems were dramatically applied to
develop forecasting models in the construction management area (Kim, An, & Kang, 2004) (Li, 1995)
(Boussabaine, 1996) (Bowena & Edwardsa, 1985) (Moselhi, Hegazy, & Fazio, 1992) (Martin Skitmore &
Thomas Ng, 2003) (Leu, Chen, & Yang, 2001) (Tah & Carr, 2000) (Chan, Chan, & Yeung, 2009) (Cheng
& Ko., 2003). Productivity estimation of construction operations, as a decision criterion in project planning
and control, has become an interesting target for forecasting models.

With the increasing volume of historical data provided to these kinds of models, an urgent need for data
analysis techniques became apparent. Data clustering can be regarded as the most well-known and
prevalent technique in exploratory data analysis. It provides a requisite data-preprocessing step to identify
homogeneous patterns among data on which consequent supervised models are built. Furthermore, the
wide appeal and usefulness of data clustering techniques have pushed researchers to combine them with
other technologies, such as artificial neural network (ANN) and fuzzy reasoning. The recent trend has
resulted in a diversity of cluster-aided models. Adaptive Neuro-Fuzzy Inference System (ANFIS) is a well-
known example of such models which decomposes the input data space to subspaces and builds linear
(or single value) rule consequences in each subspace. In this system, fuzzy clustering can accomplish
the partitioning in which each cluster represents one particular behavior of the system.
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Although the main purpose of these cluster-aided systems is to provide an accurate and interpretable
model, any unconsidered decision about the involved parameters can deteriorate the performance of the
model. It is shown that the improper determination of the number of clusters as one of these parameters,
can noticeably distort the fitness of such models. This issue, besides emerging tendencies to the
application of cluster-based fuzzy and neural network systems led us to scrutinize the impacts and
benefits of optimizing the number of clusters in productivity forecasting models. The objectives of the
current research can be summarized as follows:

1. Determine the optimum number of clusters to set the initial value for robust clustering techniques
2. Validate the selected number of clusters based on the performance of a cluster-based model besides
statistical indices of validation

2 Background

Clustering is considered as one of the most important and frequently used techniques in data analysis
(Beringer & Hullermeier, 2006). Data clustering is the task of organizing a dataset into different groups,
such that the objects of the same cluster are more similar to each other compared to those in other
clusters. K-Means (MacQueen, 1967; Hugo Steinhaus, 1957; Stuart Lloyd, proposed in 1957 published
in 1982) and Fuzzy C-Means (FCM) (developed by Dunn in 1973; improved by Bezdek in 1981)
clustering can be considered as the dominant algorithms in both theoretical and practical applications of
data mining. K-Means partitions the data in a way that each point belongs only to one cluster. On the
contrary, FCM possesses a fuzzy approach for reporting the memberships to different clusters. It allows
each data point to belong to more than one cluster. Many of the clustering algorithms are based on
knowing the number of clusters beforehand. K-Means and FCM algorithms are of that type and therefore
require this initial value before clustering has been accomplished. At this point, the dilemma of
determining the best number of clusters emerges.

Mountain clustering proposed by Yager & Filev (1994) was an improvement over earlier methods of
clustering. This heuristic technique performs based upon the density of data points. It applies a mountain
function (density function) to the customized griding data space in order to find the grid point with the
highest density value as the first cluster center. This procedure continues by destructing the effect of each
cluster mountain function to find the next greatest density value. While this approach is primarily
considered as a stand-alone clustering technique, in another mode it can function as a tool to obtain initial
number of clusters for more complex techniques (Yager & Filev, 1994). However, as the problem’s
dimension grows so does the computations for evaluating all grid points, a problem known as the “curse
of dimensionality” (Bellman, 1961). Chiu (1994) presented Subtractive Clustering to mitigate this problem.
Subtractive Clustering only deems the data points as candidates for cluster centers. In this way,
computational complexity and effort grows proportionally to the size of the problem instead of its
dimension (Hammouda & Karray, 2000).

The necessity of evaluating the “goodness” of clustering, or comparing between two sets of clusters,
created the need for clustering validation. Clustering validation is the act of verifying how well an
algorithm can recognize underlying patterns of data. Usually in 2D and 3D data spaces, visualization is
used as an empirical way of validation. But in case of the large multidimensional data spaces, deficiency
of an effective visualization leads to application of more formal approaches (Kovacs, Legany, & Babos,
2005). Internal validation is an approach to evaluate the clustered dataset based on inherent features of
the data itself (Halkidi, Batistakis, & Vazirgiannis, 2001). Different internal validity indices have been
proposed as an assessment for compactness and separation among the data distribution (Kovacs,
Legany, & Babos, 2005). The former examines the members of each cluster to be as close as possible to
each other and the latter evaluates clusters themselves to be widely spaced (Michael J. Berry, 1997). The
main drawback of internal validation is that supreme values of an internal index do not necessarily
conduct us to best information retrieval applications (Manning, Raghavan, & Schutze, 2008).
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Clustering techniques extensively have enhanced hybrid intelligent systems. Takagi and Hayashi (1991)
utilized clustering techniques to partition the inference rules for a Neural-Network-Driven Fuzzy
Reasoning (NNDFR) model. In this model, the data is grouped by K-Means and the number of inference
rules is equal to the number of clusters. Although the model is dynamic to the number of clusters, this
research does not provide any optimization process to find this initial value. Takagi-Sugeno (TS) type
fuzzy models define different regions in the data space each of which represents a linear input-output
mapping (Takagi & Sugeno, 1985). It is prevalent in TS models that an automatic method, like fuzzy
clustering, is exploited to attain candidates for linear regions (Jantzen, 1998). Elwakil and Zayed (2012)
built a Fuzzy Knowledge Based Model in order to estimate the duration of construction operations. This
model presents a fuzzification step in which crisp values were fuzzified using an integration of ANN and
FCM forming hypersurface membership functions. Although this research presented design principles of
fuzzy rule induction, it was not built on the determination of optimal number of clusters that makes a
reasonable compromise between complexity and efficiency. The above-cited works show the great
significance of clustering techniques in data analysis and modeling.

3 Proposed Framework

In this section, we propose an innovative framework so as to deal with the pre-mentioned gaps in
optimization and validation of data clustering. The essence of this framework is finding an initial value for
the number of clusters, which fits the natural patterns among the dataset. To this end, subtractive
clustering is accomplished and cluster centroids will be identified. The number of centroids is counted and
then fed to K-Means which is more expert in data clustering. The reasons that we chose K-Means are: 1)
Its compatibility with validity indices checking separation and compactness of the dataset 2) Its accuracy
in locating centroids compared to subtractive clustering. In this way, the limitations of each clustering
technique are treated by the other one. The proposed procedure could be elaborated in the following
steps.

3.1 Step 1: Subtractive Clustering

Subtractive clustering starts by calculating a density measure at each data point through the following
function (Chiu, 1994):

n

||X1—Xi||2
[1] Di= ) exp| —————
1‘21: (ra/z)

Where r, is a positive constant, which represents the cluster radius. Thus, the more neighboring data
points, the more density value. The data points beyond this radius will have less influence on density
measure. The point with the highest density value D is selected as the first cluster center x,. Then, the
density measures of all data points are revised through (Chiu, 1994):

Where 1y, is a positive constant representing a neighborhood with measurable reductions in potential.
Hence, the nearer data points to x, will have more reduction of density measure. 1y, is usually described
by a coefficient of r,. This coefficient is named “Squash Factor” in Matlab software. After amending the
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density functions, the point having the greatest value will represent the next center. This procedure
continues until the predefined termination condition is met or an appointed number of centroids is
acquired (Hammouda & Karray, 2000).

3.2 Step 2: Combining Subtractive Clustering with K-means

K-Means commence running only when the initial value for the number of clusters K is enacted
beforehand. However, nobody can neglect the effect of an improper determination of the initial value,
which may result in wrong decisions. This matter can be resolved when the subtractive method acts as an
initial value generator for K-Means. Hence, the K-Means obtains the output of the Subtractive method and
then starts clustering (Liu, Xiao, Wang, Shi, & Fang, 2003).

3.3 Step 3: K-means

K-means, as one of the simplest unsupervised clustering algorithms, partitions the data space in hard
clusters. This iterative algorithm locates centroids via minimizing the following objective function
(Matteucci, 2006):

k n

B11=) > Ix”—
1

j=1 i=

Where xi(j) is the i™ measured data, ¢j is the center of the jth cluster, and [|*|] is a kind of distance between
the d-dimensional vector xi(]) and the d-dimensional vector c;. The objective function can be minimized
through the following steps (Matteucci, 2006):

Randomly place K points representing initial centroids in the data space
Assign each data point to the cluster that has closest centroid

Calculate the revised position of each centroid

If the positions of centroids didn’t change go to the next step, else to the step 2
End.

aghrwnhPE

3.4 Step 4: Validation

In this step, the optimized number of clusters derived from subtractive clustering is validated. For this
purpose, the dataset is partitioned to different numbers of clusters and the desired validity indices are
calculated for all of the sets. The highest rank values represent better separation and compactness within
the clusters. We predict that the result of subtractive clustering would be supported by internal validity
indices. The following indices are selected to assess resulted clusters based on internal criteria:

3.4.1 Dunn Index:

The Dunn index (Dunn J. C., 1974) is proposed to identify compact and well-separated clusters. For each
partitioning, the index can be defined by the following formula (Dunn J. C., 1973):

, , d(i,j)
[4] Dnc - 12}511(; {15{2r}21¢j {m
1

<ksnc
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Where d(i,j) represents any distance measure considering the distance between two clusters, such as
the distance between the centroids of the clusters; and d’(k) represents any distance measure
considering within-cluster distance, such as the distance between any pair of elements in cluster k.
Considering the Dunn’s index definition, it may be concluded that higher values of the index are more
favorable.

3.4.2 Davies-Bouldin Index:

The Davies-Bouldin index (Davies & Bouldin, 1979) represents the average of similarity between each
cluster and its most similar one. It may be calculated via the following simplified formula (Davies &
Bouldin, 1979):

nc

(5] DB _12 si+s;
" ne 1<) d(ci, ;)

i=1

Where nc is the number of clusters and cyis the centroid for cluster X. sy represents the average

distance between all elements in cluster and centroid cy, and d(x,*) indicates the distance between
different centroids. Hence, lower values of Davies-Bouldin index are more desirable.

Internal validation of clustered data spaces solely cannot ensure the best information retrieval application.
This fact highlights the need for a performance assessment of the model under study, before and after
the optimization process. The cluster-based model selected for this research is a NNDFR system, which
is briefly described in the following section.

3.5 Neural-Network-Driven Fuzzy Reasoning

NNDFR was the first application of neural networks in self-regulating design of membership functions.
This approach forms a nonlinear multi-dimensional membership function, which internally combines all
the fuzzy variables. The design procedure of NNDFR could be summarized in three steps: clustering the
training dataset, training the membership neural networks (NNuem), training the consequent neural
network (NNy,) of each cluster. In the first step, input data space is partitioned to hard clusters. In this
fuzzy system, the number of rules equals the number of clusters. In the second step, NNy, is trained
between each input vector and its corresponding cluster assignment vector, as illustrated in figure 1. For
example, the supervised part of the learning process for a vector which belongs to cluster 3 is (0,0,1). In
the third step, the consequent neural networks are trained between the members of each cluster,
previously partitioned in the first step, and their corresponding outputs.

. clusters
variables 1 2 3
X1 X2 X3 ... Xim I— """""""""""""" | 1—1 o o0 ... 0—
(7] | n
S X21 X2z  Xos X2m i ; S 2|10 0 O 1
= | =
@ ! g
> => ! NNmem i => 2
% ! i %
o | i o]
o) i ; o
L Xn1  Xn2  Xn3 Xnm | ST n_L0O 0 1 0 |
Input data matrix Cluster assignment matrix

Figure 1: Second step, training the membership neural network.
(m, number of input variables; n, number of observations; k, number of clusters)
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Figure 2 shows a holistic diagram of the NNDFR. The NN, generates the membership functions of the
premise (IF) parts of the rules and NNy prepare consequent input-output relationships (THEN parts).
This system calculates the final estimated output based on a weighted average of the output of THEN
parts, such that the weights are the membership values produced by NNpem.

Figure 2: The structure of NNDFR system
(W is the membership value and y* is final estimated output)

The resulting fuzzy model is expressed by the following (Takagi & Hayashi, 1991):

Rule 1: IF X = (X4, X3, ..., Xm) i C;, THEN y; = NN; (X1, X2, «., Xm)
Rule 2: IF x = (X1, X3, ..., Xm) iS C2, THEN y, = NN, (X4, X2, «.., Xm)

Rule k: IF X = (X4, X3, ..., Xm) iS Cx, THEN y = NNy (X4, X2, «r) Xm)

Where C;_x denote existing clusters. The final estimated value can be delivered through equation 6
(Takagi & Hayashi, 1991).

[6] Y'* _ le(zlws(xi) -Ys (Xi)
1 le(zl Ws(Xi)

Mean Squared Error (MSE) and Average Validity Percent (AVP), as two statistical criteria, can quantify
the deference between estimated values and actual ones. Equation 7 and 8 represent AVP, which shows
the prediction error. If the AVP value is closer to 100, the model is sound and a value closer to 0 shows
that the model is not fitting (Zayed & Halpin, 2005).

E:
n 1
e

[7] AIP = ——2x 100

[8] AVP = 100 — AIP

Where; AlP=Average Invalidity Percent; AVP=Average Validity Percent; E;=Estimated Values;
C;=Estimated Values.
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4  Case Study and Framework Implementation

This case study analyses the data gathered from construction processes of Engineering, Computer
Science and Visual Arts complex of Concordia University. The dataset consists of several quantitative
and qualitative variables affecting concrete pouring operations and their corresponding daily productivity.
Nine factors are considered: Temperature, Humidity, Precipitation, Wind Speed, Gang Size, Labor
Percentage, Work Type, Floor Level and Work Method. Table 1 presents a small sample of these 131
record points.

In the first step, subtractive clustering generates the initial value for K-Means algorithm. To perform the
computations, the subclust() function in MATLAB is applied. Chiu recommended the values 0.5 and 1.25
for the cluster radius and the squash factor, respectively (Ren, Baron, & Balazinski, 2012). These values
are set by default in MATLAB. The other two parameters are Accept Ratio and Reject Ratio. The former
sets a fraction of the potential of the first cluster center as a minimum for acceptance of the next center.
The latter sets a fraction of the potential of the first cluster, below which data points are rejected for being
a center. Regarding the fact that we are searching for proportionally dense clusters, we adopt the number
0.7 for both these parameters. The results shows that 3 numbers of clusters with the centers reported in
Table 2 are appropriate.

During the second and third steps, the data is repartitioned via K-Means into 2 to 10 clusters. Of course,
our target number is three and other numbers only provide a framework for comparison. This procedure
lets us validate the partitioning with Davies-Bouldin and Dunn indices, which are mainly created to
examine hard clusters.

Table 1: A sample of conceret pouring data

. Wind Gan Labor Dalil
Tempoerature HuTIdlty Precipitation  Speed Sizeg Percentage Work Floor  Work Producgvity
(2C) (%) (km/h)  (workers) (%) Type  Level  Method (m*man/hr.)
-8 87 2 14.2 22 36 1 3 1 1.27
-6 37 0 19.9 19 33 1 8 2 1.23
25 77 0 24 20 30 1 14 1 1.65

Precipitation: No precipitation = 0, Light rain = 1, Rain = 2, and Snow = 3

Labor Percentage: The percentage of the labor (non-skilled workers) in the gang
Work Type: Reported in terms of activity type: Slabs= 1 and Walls = 2

Work Method: Crane and bucket arrangement=1 and Pumping=2

Table 2: Cluster centers generated by Subtractive Clustering

- Wind Gan Labor
Centers Tempf rature HuTld'ty Precipitation ~ Speed Sizeg Percentage Work  Floor work
(eC) (%) (km/h)  (workers) (%) Type Level Method
Cl 3 79 0 13 11 37 1 12 2
C2 21 71 0 10 21 33 1 13 2
C3 55 46 0 12 19 33 2 10 1

In the fourth step, the validity indices are calculated and then plotted as is shown in figure 3. As we
expected, three numbers of clusters produce the highest value for Davies-Bouldin and the lowest for
Dunn index. In other words, the desired separation and compactness among the dataset is attained
through 3 clusters.
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Figure 3: Calculated values for internal validity indices

At the end, the operation is modeled by means of a NNDFR system to clarify how this optimization
technique can affect the model performance. We randomly divide our collection of 131 data points to two
fractions of 118 and 13. The model utilizes the bigger fraction to be trained. The model performance
would be then reflected through MSE of the targets and the simulated outputs of the testing sample.
Eventually, we develop different models with different number of clusters from 2 to 10 which enables us to
see the effect of any deviation from optimum cluster numbers. Table 3 tabulates MSE Train, MSE Test,
AVP and AIP of all developed models versus their number of clusters. As seen in figure 4, the model with
3 clusters has the best performance in terms of the testing MSE. The MSE and AVP of the three-cluster
model are improved by 60 and 2.5 percent respectively, over the four-cluster model, which owns the
second rank. Thus, the empirical result supports the proposed procedure of detecting optimum number of
clusters when it is embedded in a cluster-based model. Table 4 reports the estimated outputs of testing
sample modeled by three-cluster NNDFR against the actual values of daily productivity.

Table 3: NNDFR result vs. number of clusters Table 4: Result of the three-cluster NNDFR model

Number  \yse MmsE Daily Productivity Daily Productivity
of . AVP  AIP

Clusters Train Test (m3/man/hr.) (m3/man/hr.)
2 0.0200 0.0636 86.76 13.24 Index Actual Estimated |ndex Actual Estimated
3 0.0091 0.0218 9259 741 1 1.550 1.550 8 1.80 2.044094
4 0.0169 0.0544 90.07 9.93 2 1.370 1.370 9 1.88 2.105987
5 0.0297 0.0771 86.34 13.66 3 1.250 1.330 10 202 2272661
6 0.0335 0.1021 83.77 16.23 4 1.490 1.570 11 1.97 2.016129
7 0.0212 0.1193 83.60 16.40 5 1.210 1.275 12 1.73  1.902600
8 0.0373 0.1598 80.20 19.80 6 1.340 1.525 13 1.23 1.295237
9 0.0318 0.0686 86.07 13.93 7 1.510 1.656

10 0.0935 0.1905 78.45 21.55

5 Conclusion

The current research presents a framework to investigate the impacts and benefits of optimizing the
number of clusters in cluster-based models. Regarding the sensitivity of prevalent clustering techniques
to initial number of clusters, subtractive clustering is applied to generate this initial value in advance. In
this case, subtractive clustering is used to compute the number of clusters rather than partition the data.
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The optimized number of clusters is then validated through internal validation indices which statistically
examine the results based on the inherent features of the data. The developed framework is further
validated and verified using a case study implemented to a cluster-based model. Our data, which is a set
of variables affecting daily productivity of concrete pouring process, is optimally clustered via proposed
framework. It is then fed to an NNDFR model as our choice of cluster-based models. Developing different
models against different number of clusters reveals that model’s prediction improves by 60 percent in
terms of MSE using this innovative technique. The case study is provided as a response to the need of
real-world validation besides statistical and model-free approaches. The developed research helps
researchers and practitioners by providing them with an effective way of data partitioning.

—— MSE(Train)

0.18 - ---e--- MSE(Test)

MSE

2 3 4 5 6 7 8 9 10
Number of Clusters

Figure 4: MSE vs. number of clusters
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