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Abstract: The Friedman-Gates controversy is a famous controversy in the history of scientific research 
on competitive bidding modeling that started in late 1960s.  After many years of frenzied debates, the 
construction management community did not seem to have reached an agreement. Recent work by the 
author has completely resolved the controversy. This paper briefly reviews the controversy and reports 
major findings from the author’s recent work, from which a solid conclusion of the Friedman-Gates 
controversy is drawn. 

1 Background 

The Friedman-Gates controversy (hereafter “the Controversy”) refers to the historical controversy in the 
study of competitive bidding modeling started in late 1960s.  The basic decision-theoretic study 
framework for competitive bidding modeling was established by Friedman (1956) in order to determine an 
optimal markup size to maximize the company’s strategic profit.  The probability of the decision-making 
bidder (hereafter “the Contractor”) winning over the competing bidders (“the Competitor(s)”) is a key 
modeling component. The lowest bid is the typical winning criteria used in the modeling. To calculate the 
probability of winning over multiple Competitors, Friedman suggested a formula based on statistical 
independence assumption.  Gates (1967) adopted the same modeling framework and applied it to 
construction industry.  However, he proposed a different formula to evaluation the probability of winning.  
The two formulae were so different that many researchers were attracted and tried to figure out which 
should be actually used.  Several of them at various times claimed that they found a final resolution, but 
those resolutions had never been universally accepted, some later proved to be even wrong. There were 
a couple of excellent analytical papers in 1970s and 1980s that pointed out the fundamental flaws in 
Gates’ formula.  Pitifully, those well-written papers, with their high intellectual sophistication, did not seem 
to have been widely read, understood and accepted. After entering the new centennial, the construction 
management community seemed to have lost their interest in the Controversy, although research papers 
attempting to validate the Gates model still appeared sporadically in diverse journals and conference 
proceedings.  
 
Meanwhile, some recently published textbooks still present both Friedman and Gates models without 
telling students and professionals how to address the large discrepancy in the ‘optimal’ markup or 'best’ 
bid price suggested by the two models.  This aggravated practitioners' already distorted belief that 
quantitative modeling approaches be fruitless.   
 
A couple of years ago, the Controversy attracted the author’s attention when he was preparing for an 
undergraduate course in construction project management.  Subsequent research ended up with a 
beautiful resolution to the Controversy.  This paper briefly reviews the controversy and then reports major 
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findings from the author’s recent work, from which a solid conclusion of the Friedman-Gates controversy 
is drawn.  
 

2 General Modeling Framework 

Before the Controversy is discussed, it is worthwhile to briefly review the general modeling framework that 
Friedman and Gates took to furnish the best markup to be used in a competitive bidding game.  The 
discussion here is confined to the case where the bidder with lowest bid wins the contract. 
 
The basic idea of competitive bidding model is to determine an optimal markup so as to maximize the 
expected profit. Note that the actual profit cannot be maximized. This is because there are two major 
uncertainties in determining the actual profit at the time of bidding:  
 

(1) Whether the bid can be won is an uncertain event. 
(2) The actual project cost is unknown and the best the bidder can have is the bid estimate.  
 

If the bid is not won, the profit will be zero (given that the estimating cost is negligible or at least 
considered as a sunk cost). If the bid is awarded, the profit will be the difference between the bid price 
and the actual cost to be incurred. Yet, the actual cost is unknown till the completion of the project.  
Therefore, only the expected profit can be maximized.  To evaluate the expected profit, one can at first 
assume that actual cost is known and then consider the uncertainty of the actual cost by integrating it out.  
 
So, conditional on a given actual cost 𝐴 = 𝑎 (as a notational convention in probability, the upper case 
letter is used for the random variable and the lower case for its realization), the expected profit is simply 
the product of the probability of winning, and the difference of the bid price and the actual project cost. In 
mathematical terms, let 𝑐0 denote the cost estimate furnished by the Contractor (the decision maker) for 
the project under bidding.  In this paper, the subscript “0” is used to denote the quantity associated with 
the Contractor. Let 𝑏0 denote the Contractor’s bid price, which equals the estimated cost plus a markup, 
i.e., 𝑏0 = 𝑐0 + 𝜌 = 𝑐0(1 + 𝑚) where 𝜌 denotes the markup or profit and 𝑚 = 𝜌/𝑐0 is called the markup 
rate.  The probability of the Contractor winning the project at the bid price 𝑏0 over the Competitors is 
denoted by 𝑆.  Therefore, the expected profit with the actual cost 𝑎, denoted by 𝛹𝑎, is expressed as 

 𝛹𝑎 = (𝑏0 − 𝑎) × 𝑆 + 0 × (1 − 𝑆) = (𝑏0 − 𝑎)𝑆 (1)  

This eliminates the first layer of the uncertainty: the chance of winning or losing the game.   
 
Now that the actual cost 𝐴 is unknown and can be modeled by a continuous random variable with a 
probability distribution characterized by a cumulative distribution function 𝐹𝐴(𝑎) or alternatively, a 
probability density function 𝑓𝐴(𝑎), the final expected profit is evaluated by integrating the actual project 
cost out, i.e., 

 𝛹 = �𝛹𝑎 d𝐹𝐴(𝑎) = �(𝑏0 − 𝑎)𝑆 × 𝑓𝐴(𝑎)d𝑎 (2)  

 
The probability of winning 𝑆 is a function of the bid 𝑏0 and the overall competitiveness.  When there is 
only one competitor, then 𝑆 is the probability that the Competitor’s bid, 𝐵1, is greater than the 
Constractor’s bid, 𝑏0, i.e., 𝑆 = Pr(𝐵1 > 𝑏0).  When there are more than one competitor, it is the probability 
that 𝑏0 is still the lowest, or in other words, the probability that the lowest competing bid, 𝐵𝑚𝑖𝑛 =
min(𝐵1, … ,𝐵𝑛), is still greater than 𝑏0, i.e., 𝑆 = Pr(𝐵𝑚𝑖𝑛 > 𝑏0). Here 𝑛 is the number of Competitors. 
Clearly, the probability of winning has nothing to do with the actual project cost and must be independent 
of 𝐴.  Friedman (1956) treated the independence relationship as an assumption of statistical 
independence.  This is an unnecessary assumption because 𝑆 and 𝐴 must be functionally (i.e., logically 
or mechanistically) independent: bidding occurs way ahead of the competition of a project when the 
actual project cost will become known.  Logical independence governs statistical independence. 
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With this, the integral in (2) can be simplified as 

 𝛹 = �𝑏0 − �𝑎𝑓𝐴(𝑎)𝑑𝑎� 𝑆 = (𝑏0 − 𝜇𝐴)𝑆 (3)  

where 𝜇𝐴 denotes the mean value of the random actual project cost 𝐴.  The term “mean value” here is 
worth a few more words.   
 
Practitioners who are unfamiliar with probability theory may prompt the challenge that the actual project 
cost is uncertain simply because it is just unknown.  They contend that the actual cost should not be 
treated as a random variable, as the project is not a repetitive event and the random model is lack of 
statistical basis.  To answer this question, we need to first understand that the competitive bidding model 
is a normative model, not a descriptive model.  It is not the Contractor’s interest at the time of making the 
bid decision to predict what will be the exact project cost.  It suffices for the decision if the Contractor can 
quantify the accuracy of the cost estimation.  Therefore, although the actual project cost is a unique event 
which is not random at all, cost estimation is a repetitive process and the relative accuracy of the cost 
estimate is subject to some statistical law. For a general contractor who wishes to survive in the 
competitive market for long, it is reasonable to assume that 𝜇𝐴 = 𝑐0.  For those who could not satisfy this 
assumption, they would have disappeared from the market.  
 
The second challenge to the above formulation comes from the modelers.  They accept the long-run 
accuracy argument made above, but they suggest that it must be the unknown actual project cost, rather 
than the cost estimation, that should be treated as the random variable.  Following this line or argument, 
the expected profit would be expressed as the following:  

 𝛹 = ��(𝑚 + 1)𝑐0 − 𝑎�𝑆(𝑐0)𝑓𝐶0(𝑐0)d𝑐0 (4)  

where 𝑓𝐶0(𝑐0) denotes the probability density function of the cost estimate.  Eq. (4) cannot be further 
simplifies because the probability of winning is a function of the integral variable 𝑐0.  With different value 
of the cost estimate, the bid price at the same markup rate would vary and hence the probability of 
winning would also differ.  However, the major problem of this formulation is not the mathematical 
nuisance, but that the formulation confuses a decision variable and a decision parameter.  Remember the 
decision variable of the actual bid decision is the bid price 𝑏0.  By decision variable it means 𝑏0 is a 
quantity that can be changed freely by the decision maker.  In the formulation of (4), 𝑐0 is a random 
variable that is out of the decision maker’s control.  Moreover, this formulation also artificially mixed up the 
two uncertainties, which actually are separable and of different nature, as discussed above.   
 
To conclude, the mean value in (3) should be understood as the long-term average accuracy of the 
estimation of actual project costs.  With the assumption that 𝜇𝐴 = 𝑐0, equation (3) can be further simplified 
as 

 𝛹 = ((𝑚 + 1)𝑐0 − 𝑐0)𝑆 = 𝑚𝑐0𝑆 (5)  

Since 𝑐0 is a decision parameter that is fixed in front of the bid decision, the expected profit can be 
normalized as 

 𝜓 =
𝛹
𝑐0

= 𝑚𝑆(𝑚) (6)  

𝜓 can be called the expected profit rate.   It is emphasized here that the probability of winning is a 
function of the markup rate 𝑚 as it is expressed as 

 𝑆(𝑚) = Pr(𝐵𝑚𝑖𝑛 > 𝑏0) = Pr �
𝐵𝑚𝑖𝑛
𝑐0

− 1 > 𝑚� = Pr(𝑀𝑚𝑖𝑛 > 𝑚) (7)  

where 𝑀𝑚𝑖𝑛 = min{𝑀1
′ , … ,𝑀𝑛

′ } and 𝑀𝑖
′ = 𝐵𝑖/𝑐0 − 1 is called the apparent markup rate of Competitor 𝑖.  

Note that 𝑀𝑖
′ is not the true markup rate because it is based on 𝑐0, the Contractor’s cost estimator, not on 

𝑐𝑖, the Competitor’s own cost estimator.   
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The greatest contribution Friedman made was the proposal to study historical bid data 𝐵𝑖  (𝑖 = 1, … ,𝑛), 
relative to the Contractor’s cost estimate 𝑐0, to evaluate the probability of winning.  Specifically, he 
proposed to study each Competitor’s historical bids in terms of the apparent markups (i.e., the ratio of 
competitor’s bid to the contractor’s cost estimate for a same project) and fit them with a probability 
distribution, from which the probability of winning an individual Competitor can be derived.  Based on 
these individual probabilities, one then calculates the overall probability of winning all Competitors. 
Finally, the optimal markup rate can be easily found by maximize the normalized expected profit 𝜓 in Eq. 
(6).  This is the basic modeling framework Friedman proposed and Gates followed. 
 

3 The Controversy 

It is the way of aggregating the individual probabilities for the overall probability of winning that caused the 
Controversy.  Denote by 𝐹𝑖(𝑥) the cumulative distribution function of the apparent markup of Competitor 𝑖. 
Then the probability of winning over this individual competitor at a given markup rate 𝑚 can be readily 
found as Pr(𝐵𝑖 > 𝑏0) = Pr(𝑀𝑖

′ > 𝑚) = 1 − 𝐹𝑖(𝑚).  To evaluate the probability of winning over 𝑛 
Competitors, Friedman followed the basic probability principle:   

 𝑆(𝑚) = Pr(𝑀𝑚𝑖𝑛 > 𝑚) = Pr(min{𝑀1
′ , … ,𝑀𝑛

′ } > 𝑚) = Pr{(𝑀1
′ > 𝑚) ∩ …∩ (𝑀𝑛

′ > 𝑚)} (8)  

To proceed, he invoked the assumption of statistical independence among 𝑀𝑖
′. With this assumption, the 

probability of winning over multiple Competitors is simplified as the product of the probabilities of winning 
over each individual Competitors, i.e., 

 𝑆𝐹(𝑚) = � Pr(𝑀𝑖
′ > 𝑚)

𝑛

𝑖=1

= ��1 − 𝐹𝑖(𝑚)�
𝑛

𝑖=1

 (9)  

The superscript “F” is used to denote the Friedman model.   
 
Gates, driven by the illusion of “share of the work”, however, proposed the following equation: 

 𝑆𝐺(𝑚) = �1 + �
𝐹𝑖(𝑚)

1 − 𝐹𝑖(𝑚)

𝑛

𝑖=1

�
−1

 (10)  

The superscript “G” is used to represent for Gates model.   
 
The two formulae are very different not only in model structure, but also in the actual numerical results at 
a given markup level.  In defending his formula, Gates referred to an imaginary bidding scenario in which 
six bidders are bidding for the same project, each having equal probability of winning over another.  
According to Gates, the probability of winning of each bidder over the other six ought to be 1/7, as each 
bidder must have an equal chance of winning the project.  However, the Friedman model, under the 
assumption of independence, predicts a probability of (1/2)6, which is barely 1.6% or 64-to-1 odds against 
the bidders. Gates’ plausible justification for Eq. (10) and the large difference in the formulae invited 
intense debates that have lasted for several decades.   
 
Several reviews of the Controversy are available, for example, Benjamin and Meador (1979), King and 
Mercer (1987), Crowley (2000), and more recently, Yuan (2011).  In the following, the fundamental flaws 
of the two models and later developments are summarized. 

3.1 The Flaw of Friedman’s Model 

The flaw of Friedman’s model has been very clear at the very beginning.  As mentioned above, in order 
for Eq. (9) to be valid, the apparent markup rates or the apparent markup ratios (defined as the ratio of 
the Competitor’s bid to the Contractor’s cost estimate) have to be statistically independent.  Whether they 
are independent or not was not tested until very recently. 
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3.2 Fundamental Flaws of Gates’ Model 

There are two major fundamental flaws in Gates’ model.  The first flaw arises from the confusion of 
perspectives, whereas the second flaw from the misuse of probability theory.  These fundamental flaws of 
Gates’ formula were gradually pointed out by Stark (1968), Rosenshine (1972), Fuerst (1976, 1977) and 
Ioannou (1988).   
 
The symmetry argument Gates used to defend his model was very tricky indeed.  Even Friedman was 
trapped by it. When asked by Gates, Friedman reportedly stated (Gates, 1970): “It is rather obvious that 
with 7 closely matched competitors the probability of winning will be 1/7.” Nevertheless, this argument 
turned out to be a misuse of perspectives. Ioannou (1988) called it a “fallacy of symmetry”.  In general, 
there are two perspectives from which the probability of winning can be calculated.  They are the market 
perspective and the decision-maker’s perspective.  The market perspective is often used in game theory, 
or game-theoretic formulation of decision making, to study the market equilibriums at which the Bidders 
should bid to win the due market share.  The market perspective does not help the Contractor to 
determine the specific size of the markup to win the specific bid, although the Contractor may use the 
market perspective to review his historical bids.  For one specific markup size decision, however, the 
Contractor has to take the decision-maker’s perspective, which is shown in Eq. (6).  The major mistake 
Gates and his followers made in the debates was that they used a market perspective in the calculation of 
the probability of winning while sticking to the decision-theoretic formulation that Friedman established.  
To correctly apply the decision models, the problem formulation and the perspective in calculating the 
probability of winning should be compatible.  We cannot use the probability of winning calculated from the 
market perspective and apply it to a decision-theoretic model.  Friedman’s model does not suffer from this 
flaw.  In fact, if the market perspective is applied to the imaginary symmetrical bidding, the Friedman 
model can actually achieve the same answer of 1/𝑛, as it was pointed out by Fuerst (1976) and reiterated 
by Ioannou (1988).  To answer all challenges based on the symmetry argument, one can simply and 
firmly state: In deciding the markup size, the Contractor actually does not need to worry about his market 
share; if he bids as suggested by the model and the other Competitors also bid as suggested by the 
model, then in the end all bidders will get ‘automatically’ the due market share.   
 
The second problem of the Gates’ model is that even from a market perspective the Gates’ model is only 
conditionally valid.  This condition was provided by Fuerst (1976) using a discrete probability example.  
With the notations in this paper, the condition is expressed as 

 
𝑝𝑖

1 − 𝑝𝑖
=
𝑆𝑖
𝑆0

 (11)  

where 𝑝𝑖 is the probability of the Contractor winning over the individual Competitor 𝑖, and 𝑆0 and 𝑆𝑖 are the 
probabilities of the Contractor and Competitor 𝑖, respectively, winning the bid.  Using the symmetric 
bidders as an example, because the bidders are equally competitive, the probability of winning the bid is 
equally distributed; thus 𝑆𝑖/𝑆0 = 1.  Meanwhile, the odds of winning over an individual competitor are one 
by one.  Therefore, the condition of (11) is satisfied, and the Gates’ model can obtain the desired fraction 
reflecting the equal market share.    
 
Unfortunately, except for this special case, Gates and the subsequent adherents failed to provide any 
justification why this condition should be satisfied in general.  Gates attempted to justify his development 
by stating (Baumgarten, Benjamin, & Gates, 1970) that his model “depicts a case of statistically 
dependent events”, which Friedman failed to consider.  However, he never provided any mathematical 
derivation based on rigor probability theory. Benjamin, a Stanford PhD graduate, ever claimed that he had 
‘derived’ Gates’ model and concluded that “the [Gates] model is clearly as rational as that used by 
Friedman although it yields different results” (Baumgarten et al., 1970). But nobody in subsequent 
debates really trusted his derivation. As R. M. Skitmore, Pettitt, and McVinish (2007) has put, “Benjamin, 
recognizing that Gates provides no mathematical proof, attempted to rectify the situation but was unable 
to do so.” 
 
The latest attempt to justify Gates model was made by R. M. Skitmore et al. (2007). They maintain that 
the proportional hazard property of the distribution be a sufficient and necessary condition for Gates’ 
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formula.  Several comments are worth adding here.  First, as many predecessors who tried to ‘prove’ 
Gates’ model, they misused the market perspective to calculate the probability of winning for a decision-
theoretic model.  Second, the proportional hazard property of the distribution should be only a sufficient 
condition because without this condition the Gates’ model is also correct for the special case of symmetric 
bidders as discussed earlier, in which each bidder’s bidding pattern can follow any statistical distribution.  
More importantly, Skitmore et al.’s condition for the Gates’ model was derived based on the assumption 
that the bidding patterns are statistically independent, which is what Gates would definitely avoid.     

4 Later Development 

Motivated by the Controversy, Carr (1982) and Skitmore (1991) developed their own competitive bidding 
models, both explicitly considering the uncertainty involved in the cost estimate.  In order to estimate the 
accuracy of cost estimate, Carr adopted a set of strong assumptions:  

1) All bidders’ cost estimates are unbiased; 
2) Bidders have the same variance in their cost estimates;   
3) The cost estimates and bids are independent and normally distributed; and 
4) Variances in cost estimates are substantially greater than variances in markup.   

Based on these assumptions, he proposed to evenly split the variance of a bid ratio into two parts: one 
half for the cost estimate and the other half for the bid.  The cost estimate was then taken as a normal 
distribution with a mean of one and the variance being half of the estimated variance of the bid ratio, and 
the competitor’s bid as another independent normal distribution with the mean being the estimated mean 
of the bid ratio and the variance equal to the variance of cost estimate.  Finally, the probability of winning 
is expressed as an integral over the cost uncertainty (Carr, 1982).   
 
Skitmore (1991) and M. Skitmore and Pemberton (1994) developed another approach to estimating the 
statistical parameters for the Contractor’s cost estimate and Competitors’ bids.  Instead of splitting the 
variances of the bid ratios, Skitmore expressed the mean of the logarithmically transformed data by the 
sum of bidder’s effect and a “contract datum parameter’, the latter of which represents the project size 
and serves as a reference point.     
 
Both the Carr model and the Skitmore-Pemberton model aim at the quantification of the uncertainties in 
cost estimate.  But they also suffer from various defects.  The major issue of Carr’s model is that those 
assumptions have been lack of supports from empirical evidence. The even splitting of the variance is 
very arbitrary, and the independence assumption is made mainly for the sake of mathematical 
convenience.   
 
The Skitmore-Pemberton model, although making no assumption for the proportion of variances between 
the cost estimates and bids, requires direct quantification of the uncertainty in the Contractor’s cost 
estimate from historical bid data, which can be a very difficult task.  In fact, the statistical method 
proposed by Skitmore and Pemberton for estimating the variance of the cost estimate cannot obtain the 
correct value; for more details, refer to Yuan (2011).  Moreover, the contract datum parameter, a 
nuisance parameter, is also hard to estimate.  This has made the Skitmore-Pemberton model 
computationally expensive and data demanding, which might limit its application in real world.  On the 
other hand, although the Skitmore-Pemberton model was called a multivariate model, the multivariate 
nature was only shown in the location parameters (i.e., the means of the distribution) while the statistical 
dependence among competitors’ bids was not considered.  In calculating the probability of winning, the 
joint distribution function of bids was still expressed as a product of marginal distributions.  This means 
that similar to the Carr model the competitors’ bids are also assumed to be independent.    More 
importantly, the Skitmore-Pemberton model uses the formulation frame set in Eq. (4).  As it has been 
discussed in Section 2, this formulation is not proper for the markup size decision.  
 
Two amendments were later proposed to the Skitmore-Pemberton model.  Lo (2000) reparameterized the 
location parameters and further assumed that the variance be an exponential function of the bidder’s 
effect.  However, the comparison by Lo (2000) suggested a great difference in the statistics for the 
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bidder’s effect between the Skitmore-Pemberton model and Lo’s modification.  The other amendments to 
the Skitmore-Pemberton model was proposed by Liu, Wang, and Lai (2005), in which the cost estimate 
was allowed to be biased.  But again, neither of the amendments addressed the preceding formulation 
issue.  

5 Recent Development 

After tracing back the Controversy and later development, the author recently proposed a genuine 
multivariate bidding model that explicitly considers the statistical dependence among the bid ratios (Yuan, 
2011).  Here the bid ratio, also known as the apparent markup factor, is defined as the ratio of the 
Competitor’s bid to the Contractor’s cost estimate.   Considering that the historical bid data in the real 
world usually are limited and unbalanced and they includes lots of missing data, he further developed a 
robust Bayesian statistical procedure based on Markov chain Monte Carlo simulation (Yuan, 2012).   
 
Assumptions associated with the proposed model are as follows: 

1) The bid ratios, 𝑋𝑖  (𝑖 = 1, … , 𝑞), follow a multivariate lognormal distribution.  
2) The competitors’ bidding behavior is stationary; that is, the competitors will bid for the current 

project in the same manner as they have bid in the past. 
3) The Contractor has an unbiased cost estimate. 
4) The number of competitors, 𝑛, and their identity is known for the project under tendering. 

A multivariate lognormal distribution has a joint PDF expressed as (Kotz, Balakrishnan, & Johnson, 2000) 

 𝑓(𝒙) = (2𝜋)−
𝑛
2(det(𝚺))−

1
2 ��𝑥𝑖

𝑛

𝑖=1

�
−1

exp �−
(log(𝒙) − 𝝁)𝚺−1(log(𝒙) − 𝝁)𝑇

2
� (12)  

in which 𝒙 = �𝑥1, 𝑥2, … , 𝑥𝑞�
𝑇 is a 𝑛-dimensional column vector; 𝝁 and 𝚺 are the mean vector and 

covariance matrix, respectively, of the random vector 𝑿; and det(∙) denotes the determinant operator of a 
matrix.  The covariance matrix is expressed as 

 𝚺 =

⎣
⎢
⎢
⎡ 𝜎1

2 𝜌12𝜎1𝜎2 ⋯ 𝜌1𝑛𝜎1𝜎𝑛
𝜎22 ⋯ 𝜌2𝑛𝜎2𝜎𝑛

⋱ ⋮
sym. 𝜎𝑛2 ⎦

⎥
⎥
⎤
 (13)  

In shorthand, we denote 𝑿~𝑀𝑉𝐿𝑁(𝝁,𝚺) for the multivariate lognormal random vector with mean 𝝁 and 
covariance matrix 𝚺.  Similar to the univariate counterparts, log(𝑿) follows a multivariate normal 
distribution, i.e., log(𝑿) ~𝑀𝑉𝑁(𝝁,𝚺).   
 
It is trivial to see that the Friedman model corresponds to a special case of the proposed model when all 
correlation coefficients are zero.  The Carr model may also be considered as a special case of the 
proposed model, provided that the normal distributions used in the Carr model are replaced by lognormal 
distributions.  With a few mathematical operations it is readily shown that the Carr model can be 
considered a special case of the proposed model with a strictly patterned correlation matrix.  If the 
variances of Competitors’ bids are indeed equal as assumed by Carr, then Carr’s model is equivalent to 
the proposed model with 𝜎1 = ⋯ = 𝜎𝑛 and 𝜌𝑖𝑗 = 0.5 for 𝑖 = 1, … ,𝑛 − 1;  𝑗 = 2, … ,𝑛.    
  
The advantages of the proposed model are obvious.  First of all, the model provides complete 
characterization of the uncertainties involved in a bid decision.  It characterizes not only the variances, but 
also the correlations among different bidders.  Yuan (2011) explains in detail why the correlation should 
exists both from a market sharing perspective and from a probabilistic modeling perspective.  The case 
study using real-world data also provides empirical evidence of positive correlations.  Moreover, the 
model structure is adaptabl to the real world.  No assumption is made with regards to the relative 
variations of Competitors’ bids and the Contractor’s cost estimates.  Furthermore, the formulation of the 
model is self-compatible.  It treats the cost estimate 𝑐0 as a decision parameter whereas it also considers 
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the effects of the uncertainties in cost estimate on the probability of winning, expected profit and optimal 
markup.  Finally, the proposed model also provides an excellent platform to compare the existing 
competitive bidding model. 
 
Figure 1 illustrates the effects of correlation. It is shown that the correlation has very significant impact on 
the probability of winning, the expected profit and the optimal markup.  At a given percentage markup, 
say 4%, the probability of winning can vary from about 5% for 𝜌 = 0 to 65% for 𝜌 = 1 (Figure 1a).  For a 
fixed number of Competitors, say 𝑛 = 5, the optimal markup can var from about 2% for 𝜌 = 0 to 4.5% for 
𝜌 = 1.  Therefore, the actual optimal markup size can be doubled, depending on the value of correlation 
among the bidders. 
 
Figure 1 also compares the three existing models: Friedman, Gates and Carr models.  The Skitmore-
Pemberton model is not included in this comparison as it is not a compatible model as discussed above.  
It is clear that the Gates’ and Carr’s models are very close, particularly in terms of the optimal markup.  
This partly explained why there were still people (e.g. Crowley (2000)) advocating the Gates’ mode after 
the Controversy relatively cooled down after 1988.   
 

  
 

Figure 1: Effects of correlation on (a) the probability of winning with n = 5, (b) the expected profit with n = 5, and (c) 
the optimal markup percentage. 

 
The only potential issue of the proposed multivariate competitive bidding model is the statistical 
estimation of the model parameters.  The model includes a fairly large number of parameters, including 
the mean, variances and the correlation coefficients.  Reliable estimation of these parameters requires a 
large number of historical bid data, which might not be available for small to medium-size contractors.  To 
make the situation even worse is that any of two Competitors do not always bid the same projects.  This 
causes a lot of missing data in the database.  To clear these practical hurdles, the author developed a 
Bayesian statistical procedure using modern statistical computation techniques.  MATLAB source codes 
are made available in Yuan (2012). 
 
The case studies by Yuan (2011, 2012) using real-world historical bid data reported empirical evidences 
of the dependence among the bid ratios.  To demonstrate the robustness of the proposed statistical 
procedure, two different multivariate uniform prior distributions for the correlation coefficients were used in 
the Bayesian analysis.  It was found that the estimated parameters, including the means, standard 
deviations and correlation coefficients are not insensitive to the selection of the prior distributions.  Table 
1 shows a sample result from a case study for three Competitors (C1, C2 and C3). The correlation 
coefficients of the bid ratios among the three Competitors range from 0.3 to 0.75.  The other case studies 
in Yuan (2012) all show significant correlation.  Table 1 also reports the very close optimal markups 
based on the two prior distributions in the Bayesian analysis for the correlated bidding model.  The 
optimal markup of 3% can be used.  In contrast, the Friedman, Gates and Carr models would suggest a 
markup of 2.2%, 3.65%, and 2.82%, respectively.  This difference is not small at all for real project. 

(a) (b)  (c) 
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Table 1: Comparison of parameter estimates for Case 1 with Bidders 1, 55 and 134. 

Prior 
Distributions 

Means Standard deviations Correlation Coefficients Optimal 
Markup 

(%) 1 55 134 1 55 134 (1,55) (1,134) (55,134) 

BU -0.0517 0.0108 -0.0063 0.0187 0.0724 0.0560 0.4582 0.7356 0.3053 3.02 

JU -0.0518 0.0116 -0.0050 0.0188 0.0718 0.0551 0.4554 0.7308 0.2474 2.91 
 

6 Discussions and Conclusions 

In competitive bidding, the markup should be high enough to ensure a profit if won, yet not too high to 
lose the job.  Clearly, the markup should be adjusted for the competitiveness of the bidding.  The 
competitiveness depends on the number of Competitors and the lowest possible bid that the Contractor 
would perceive the Competitors might tender.  How to evaluate the competitiveness is a very subtle 
issue.  Statistical method is a good approach to the evaluation of the competitiveness. 
 
The Friedman-Gates Controversy on the probability of winning has been lasting for so many years.  Many 
prominent researchers in construction management and operations research participated in the debates.  
Now it is the time to close the chapter.  It is very clear now that the Gates’ model is an engineering 
approximation at best.  The model arrives with a whimsical guess that matches only one special case 
from a wrong formulation of the problem.   
 
Some construction management professionals tend to believe that quantitative modeling approaches, 
including critical path methods, are futile.  They are short-sighted, of course.  However, it is interesting to 
understand why researchers lost their interest in the study and why professionals lost confidence of the 
models.  Historically, professionals were actually very active in trying to apply the Friedman’s model in 
bidding; this was witnessed by the book by Park and Chapin Jr. (1992), the first edition being published in 
1966.  However, Park used mainly Friedman’s model.  As shown in Figure 1, Friedman’s model always 
underestimates the optimal markup.  This clearly must have warned any experience and ambitious 
construction managers not to follow the suggestion based on the Friedman’s model.  Unfortunately the 
Gates’ model, although providing more realistic markup value, failed to rebuild professionals’ confidence. 
Because of its fundamental theoretical flaws, it effectively sent more smokes in the battlefield of winning 
professionals’ faith in using quantitative approach to improve management efficiency. 
 
From a researcher’s perspective, there is an important lesson we should learn from the Controversy.  
That is, although modeling should start from a certain simplified situation, but any simplification should 
follow logical rules.  Friedman followed the rule very well.  He explicitly presented the assumption.  Gates 
also tried to simplify the model, but he did not fully understand the working of probability theory.   
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