
4th Construction Specialty Conference 
4e Conférence spécialisée sur la construction 

 

 

 
Montréal, Québec 

May 29 to June 1, 2013 / 29 mai au 1 juin 2013  
 

 

CON-5-1 
 

Predictive risk- based model for oil and gas pipelines 
 
L. Parvizsedghy

1
, T. Zayed

1
 

1 
Dept. of Building, Civil, and Environmental Engineering, Concordia University, 

 
 
Abstract: Among different means of oil and gas transportation, pipelines are considered to be the safest 
and reasonably efficient. However, reviewing the incidents recorded on oil and gas pipelines in the United 
States of America (1992 – 2012) proved that the consequences of failures in these pipelines have been 
considerable: over 5.5 billion dollars of asset damage, 380 fatalities and 1,500 injuries, in addition to more 
than 5.5 million barrels of product loss. The domain certainly requires attention. In addition, there is a lack 
of research available in this crucial field. Therefore, the objective of this research is to develop a risk 
model for oil and gas pipelines. Data from USA incidents recorded on oil and gas pipelines from 1992 to 
2011 are utilized to build the intended model and identify risk factors leading to oil and gas pipeline failure 
while considering their consequences of failure. An artificial neural network (ANN) with two hidden layers 
through applying back propagation approach is trained to develop the model which will help decision 
makers to estimate how significant would be a failure on a pipeline for the identified risk factors. 

1 Introduction 

According to the United States’ Department of Transportation (DOT1, 2012) more than 63 percent of US 
energy is provided through oil and gas products; and the only practical way of transporting them is 
through pipelines. They carry raw materials from wellheads to the processing facilities and then transport 
the final product to the customers. The operation of more than 2.5 million miles of oil and gas pipelines in 
the USA by around 3,000 companies has not been without hazards despite the fact that they are 
considered the most trustworthy way of transporting petroleum products. The statistics prove the 
necessity of regular inspections and repair or replacement of pipelines. On the other hand, many 
inspection tools have been developed to survey different types of failure sources as well as several types 
of repairing pipelines for various sources of failure. Repair manuals and guidelines recommend which 
technique to apply at specific situations. The examples of the inspection techniques include different 
types of inline inspection tools (intelligent pigs) to inspect internal and external corrosions and find out the 
criticality of each defect. Moreover, different types of sleeves as well as various clamps have existed to 
maintain those pipelines in critical situations. However, these are expensive to run regularly or at specific 
times and require careful selection of required inspection and repair technique. Accordingly, failure 
modelling is required to estimate how critical the situation of the pipelines is based on their specifications. 
Risk assessment is a tool that can help recognise possible sources of failure within a pipeline and 
measure its consequence of failure. Fortunately, data on failures of pipelines which have been recorded 
since 1970 is of help in guesstimating risk of pipeline failures, though they are not very complete. In this 
paper, the authors develop a model to estimate the consequences of failure of pipelines. The model is 
developed by applying artificial neural network (ANN) to forecast direct monetary consequences of each 
failure type of oil and gas pipelines. This learning machine is a type of pattern recognition method which 
is applied to identify a non-linear relationship between inputs and outputs of historical data. In this 
research, ANN is applied for the estimation of the probable consequences of pipelines’ failure. The model 
is developed to predict monetary consequence of each failure type for pipelines considering their special 
attributes. The model would be useful for oil and gas operators to forecast the failure consequences of 
their pipelines and prioritise the pipelines of a network to do maintenance actions in the case of budget 
deficit.  
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2 Background 

There are few examples of research on oil and gas pipelines that have tried to develop failure and risk 
models of these types of infrastructure. Dey et al. (2004) have done research in this field aiming to 
develop a risk-based maintenance model for offshore pipelines. After introducing likelihood and 
consequence loops of risks, experts’ opinions were applied to calculate the relative weights of each factor 
of loops through analytical hierarchy process (AHP). Also, range of scores from 1 to 10 presents the 
effect values of each factor. The model calculated the risk score of each pipeline by summing up the 
score of effect value multiplied by related weights of each factor. Finally, one of the results was prioritising 
assets of a network or pipelines under control of one operating company. Most of the factors such as 
corrosion were scored in a subjective manner; though, the research tried to minimise the subjectivity of 
the decision making process in this problem. This research did not recognise the severity of different risks 
of failures: as a result, inspection tools were proposed through an experience-based process. Similar 
research by Al-Khalil et al. (2005) ranked a group of cross country pipelines with the benefit of AHP. It 
classified risks of failure in seven groups: corrosion, mid wall defect, external interference, structural 
defects, operation problems and loss of ground support. Then, experts scored probability and cost of 
failure for each pipeline against identified risk factors to calculate the overall expected cost of failure for 
each pipeline. These scores were later used to prioritise pipelines against the budget. This research tried 
to offer a “systematic risk- based approach” to prioritise a group of pipelines, yet it lacks a way to 
objectively prioritize the pipeline segments for repair. Zeng and Ma (2009) developed a risk model for 
underground pipelines which applies two sets of variables: general and inspection. The variables were 
correlated to five major types of failures: shape, seam, structural failures, pipe alignment, and blockage. 
Then, the model considered consequences of failure, cost, performance, interruption, and safety. And 
finally offers a maximum average method to maximise effect of severe consequences in risk score of 
pipelines. As the author has described, this model lacks any rating index to calculate probability of failure 
and only proposes an ordinal table of scales for different consequences; the absence of objectivity is 
apparent in this model just as in the previous ones. An artificial neural network(ANN) is used in 
Abdrabou’s(2012) model to predict the most probable source of failure for pipelines as a binary value. 
There are three types of failures in this model: corrosion, mechanical or third party. The accuracy of the 
model is acceptable; although, except for age the other factors of the model including type of product, 
location, land use and diameter remain constant over the life of a pipeline. Consequently the model does 
not represent the changes that may happen in the environment and pipe itself. In addition, as the author 
has mentioned, it uses a limited number of factors that can be developed to forecast the failure rate of 
other types of failures. These limitations, as identified by the author are mostly due to the model’s reliance 
upon the Concawe database (Davis et al. 2011) which has recorded data on a limited number of factors.  

There are several predictive learning approaches, which can be employed to recognise a pattern among 
input variables and output(s). Considering properties of data in this case and the existing uncertainty, the 
artificial neural network is identified by the authors as an efficient solution of the aforementioned problem. 
Neural networks can employ a considerable range of learning models; here we apply back-propagation 
approach, which is very useful in construction management research. Christodoulou (2004) applied 
neural networks for research on optimum construction cost markup calculation, Hegazy (1993) applied 
neural network for bid preparation, Siqueira (1999) for cost estimating, Attalla and Hegazy (2003) for 
“Predicting Cost Deviation in reconstruction Projects”, Al-Barqawi and Zayed (2006) in condition rating of 
water mains, and Achim et al. (2007) predicted remaining life of water pipes, applying neural networks. 
Based on all of this research, it can be seen that the approach has a wide application in construction 
problems, such as cost estimating to predict performance of engineering activities (Maged et al. 2004), 
and develop a model to estimate the productivity of pile construction (Zayed & Halpin, 2005). However, 
ANN is still new in predicting risk severity in pipelines and it will assist pipeline operators predict the 
consequences of identified risks to their assets. 

2.1 Proposed Methodology 

Historical data are the inputs of neural networks and a network is developed for each risk factor. The 
neural network trains itself through data entries and finds the relationship between inputs to forecast the 
output which is the monetary consequence of pipeline failures. ANN imitates the function of a human 
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brain and is very “fault tolerant” and is able to generalise, hence these properties make it suitable for 
construction management issues. This technique provides a better platform for risk management 
research, since construction problems carry a lot of uncertainty. Although the concept is very easy to 
understand, the method has a complicated mathematical approach. On the other hand, MATLAB has 
developed a toolbox to apply neural network and we have used this software to develop our model.  

2.2 Overview of ANN  

Two main functions exist in ANNs. First, a function to find the relationship between variables is applied in 
the learning phase which is controlled based on the error of produced network. The second function is 
called recalling network which inserts the inputs to the trained network and creates predictive responses. 
Moreover, if the entry data includes output in the training phase it is called supervised, otherwise it is 
called unsupervised. (Zayed & Halpin, 2005) Artificial neural networks have different layers and there are 
some processing elements (PE) in each layer, which mimic the act of neurons, thus it is called neural 
network. It is very important to design the architecture of the network. The simplest network would have 
one input, one middle and one output layer as presented in figure 1. Middle layer is usually called hidden 
layer and its number may increase based on the complexity of the problem.  

Neurons of each layer of ANNs are connected to the neurons of the next layer through connection lines. 
Each connection has a weight which is multiplied by the inputs transferred from the previous layer. In the 
end, they are summed up with a constant value called bias. (Moselhi et al. 1991) A transfer or activation 
function is used to create non-linear relationships between inputs and outputs. Sigmoid (logistic), 
hyperbolic tangent (tanh), the sine or cosine and linear function are the most frequently used transfer 
functions. Among them, the sigmoid function is the most commonly applied in construction problems. 
(Zhang et al.1998) Equations number one to five present these functions respectively. X represents 
values of the nodes. Outputs of these functions are transferred to the next layer. Performance of a 
network would be enhanced if the learning process is stopped sooner. Therefore, the network checks the 
pattern at the stopping points, called epochs, in order to stop training at the point that the learning rate 
starts to increase. 

[1] Sigmoid function: f�x� = �1 + exp�−x����  (Zhang et al. 1998) 
[2] Hyperbolic tangent: f�x� = �exp�x� − exp�−x��/�exp�x� + exp�−x��  (Zhang et al. 1998) 
[3] f�x� =  sin�x� 
[4] f�x� = cos�x� 
[5] f�x� =  x 

 
Figure 1: Typical Artificial Neural Network (ANN) 

3 Risk Factors 

Different classifications of risk factors have been considered in the literature. Various databases also 
have classified failures form different points of view including time dependency, sources of failures and 
frequency of happening. In this research sources of failure have been considered as the basis of grouping 
risks in the identification stage of risk assessment. Integrating the most frequent risks in different research 
and databases and regrouping them, we classified risks in three major groups: physical, external and 
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operational. Figure 2 depicts the sub-categories of the risk factors identified in this research. Physical 
risks include four types of risks: 

1. External corrosion: Interaction of pipeline’s external surface with environment, changes iron to 
iron oxide and leads to external corrosion and finally structural disintegration. Cathodic protection 
and pipeline coating decrease this type of risk. (DOT2, 2012) 

2. Internal corrosion: Internal corrosion happens when corrosive products, whether water or other 
chemicals, transfers through the pipeline, and leads to internal loss of pipe material. There are a 
number of mitigating actions to prevent pipelines from this risk such as injection of inhibitors and 
internal coatings. (DOT2, 2012) 

3. Material and weld defect: Although production of steel has developed over time, some impurities 
remain in pipes and may lead to some defects in pipes resulting in failure. Generally the later the 
pipeline has been constructed the more reliable it is; nevertheless, inconsistencies persist to 
remain in materials and welds applied to join pipes. 

4. Non-welded joints: Beside the defects of material and welding, some failures may happen over 
non-welded joints of pipes. These joints include flanges, fittings, etc.  

The second group of risks takes account of external risks which may happen as a result of an external 
party or natural forces and consists of the following risks: 

1. Earth movement: Movement of earth not due to heavy rains or floods may cause failure of 
pipeline. 

2. Natural hazards: Heavy rains/floods, lighting, temperature and high winds that are grouped as 
natural hazards may be a source of failure of pipelines. 

3. Sabotage: Intentional damages comprising vandalism, terrorism, theft of transported commodity 
and theft of equipment are classified under this group of risks. 

4. Third party activities: Failures caused by third party activities either through excavation vehicles 
or automobile crashes into a pipeline are grouped under the category of third party activities. 

Finally, the last group is called operational risks. These are caused by human errors or activities of 
operating company of the pipeline and are comprised of four types: 
 

1. Human error: Improper operations and activities by operator or contractor’s personnel operating 
to failure. 

2. Equipment malfunction: The breakdown or malfunction of equipment containing pumps and 
compressors, metering equipment, block, control, or relief valves, and tanks is considered as an 
equipment malfunction. 

3. Damage by operator activities: Activities of operator around the pipelines to excavate or employ 
motorised vehicle for a special purpose may bring a failure. 

4. Fire/ Explosion: Any fire or explosion as a primary cause of failure is taken into this type of failure. 

4 Research Methodology and Model Development 

Failures of oil and gas pipelines have monetary consequences as well as health, safety and 
environmental effects. The Department of Transportation (DOT1, 2012) has recorded five types of cost 
consequences for each incident, which includes “cost of public and non-operator private property 
damage”, “cost of commodity released”, “cost of operator’s property damage & repairs”, “cost of 
operator’s emergency response”, and the other costs. Among them, “cost of operator property damage” is 
directly related to the severity of failure, which we call “monetary consequences” in this research. If the 
monetary consequence is predicted, then estimating the severity of a failure in case of its occurrence 
would not be much harder to calculate. Thus, we strive to find a pattern between the severity of each risk 
factor, which may happen on a special pipeline, and identified variables. Moreover, we would like to 
optimise the variables contributed to each failure in order to have more efficient results. For the other 
types of consequences, it is very hard to find a similar pattern as it needs more data. For instance, to 
estimate the “cost of commodity released” we should forecast the spillage duration and product’s flow 
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rate. Spillage duration is dependent on lots of factors that make it more complicated and is hardly 
sensitive to the situation. In this research, direct monetary consequence has been the target of research 
and the methodology to discover pre-mentioned pattern will be clarified. 

Figure 2: Risk factors classification 

In this research we have developed a code in MATLAB 2010 software to compare variations of the 
architecture of the network. The code causes the software to be run repetitively to cover a range of 
neuron numbers and variables in order to optimise the number of neurons and variables. Khaw et al. 
(1995) propose to have (2n+1) neurons in the first hidden layer and (2n+1)/3 in the second one. Based on 
this recommendation the range of neuron numbers is defined in the code to be run for several times to 
cover this range. Moreover, the training process is repeated for the combinations of the variables to 
optimise their number in order to exclude non efficient ones and keep the variables which are more 
efficient. Results of the trained networks including their performance are saved after running. The best 
network is selected based on the performance of the network which was defined through minimum 
square error (MSE). Also, the network is adjusted by changing learning rate, the activation function, and 
the number of epochs, in order to obtain the least error on the generated pattern. Zhang et al. (1998) 
propose to standardise data of each set before training, since non-linear transfer functions restrict data to 
a limited range. Consequently, we have normalised the data to alter all to the range of zero to one.  

After reviewing the literature in this field and identifying risks and consequences, we have developed a 
method to assess pre-defined risks based on their severity or consequences. Effective variables on risk 
factors of oil and gas pipelines are identified in the relevant research literature. However, to obtain a more 
effective model, logical combinations of variables are tested based on the error of network from each set 
of variables. As can be seen the logic in figure 3, for all of the possible combinations, the network has 
been tested to select the best combination and remove ineffective ones. Results of the developed model 
are presented in this paper to describe how it will be applied on each risk factor. Here, we have 
implemented the proposed model on external corrosion failures in hazardous liquid pipeline systems 
including crude oil products. The variables that have been identified through literature review and expert 
opinions are Coating type, Cathodic protection efficiency and existence (CP), Supervisory Control and 
Data Acquisition System (SCADA), Computational Pipeline Monitoring (CPM), area around the pipeline 
as well as age, diameter, pipe wall thickness, Operating Pressure (OP), and Specified Minimum Yield 
Strength (SMYS). The first five variables are non-continuous variables and the others are continuous. 
Primary identified factors are optimised based on minimising the mean square error (MSE) of trained 
networks. Based on a suggestion of Muhlbauer (2004), the values of diameter of the pipe and its wall 
thickness values have been combined. The variable “D/Th” is created through this combination and it has 
been considered a variable that can be related to the potential of the failure of pipelines.  

For external corrosion risk factor, the model is run for 256 sets of variables (combinations of five out of 
nine pre-defined variables). Also, the networks with one and two hidden layers are tested with several 
numbers of neurons. However, two hidden layer networks result in higher performances based on the 
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comparison of MSE amounts. For the sets of five variables there are five input neurons, therefore 
proposed number of neurons are eleven neurons in the first and four neurons in the second hidden layer. 
These are computed based on literature recommendation. (Khaw et al. 1995) Similarly, networks with 
nineteen and six neurons are suggested for the nine variables sets, for the first and second hidden layer 
respectively. For this purpose training phase of ANN is run through the code in the range of ten to 
nineteen neurons in the first hidden layer and four to ten neurons in the second hidden layer to cover the 
proposed numbers of neurons.  
 
 

 
Figure 3: Overall Model Development Flowchart 

5 Data Collection 

Different database have recorded data of the failures of pipelines and a few have published data. Some 
have reported processed data on the causes and consequences of failures periodically and a few have 
published raw data on each failure. Among published databases, the authors found the database of the 
US Department of Transportation (DOT) to be the most complete one. DOT’s record of failures of 
pipelines has been the main database used in our research to find a pattern between related variables 
and their consequences. This database includes data on more than 13,000 failures since 1986. Data on 
oil, distribution gas and transmission gas pipelines must be considered and analyzed separately, as they 
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have different specifications and may behave distinctly in the case of a failure. In this paper, we have 
used the dataset from 2010-2012, which provides the most significant amount of data. In this manner, we 
could test more variables to develop an enhanced model. We have removed the data points that do not 
have values related to the variables considered in the model. Data is divided randomly into training and 
checking datasets with the ratio of nine to one. The dataset containing ten percent of data has been put 
aside to be used in the model validation. Then, training data is divided again in neural network, into 
training, testing and validation sets and the training process continues with the training dataset until the 
error in the testing and validation data is acceptable.  

DOT has recorded general data of the pipelines, exact points of incidents, and information related to the 
operators. Furthermore, it provides detailed data about each failure: the cause of the failure, the cost and 
the environmental consequences of the incident, and the overall inspections that have been done during 
the pipeline’s operation. Also, it includes data on the variables which have been selected to test the 
model on identified risk factors. Installation year of pipelines, date of failure, maximum allowable 
operating pressure, SMYS have been recorded exactly as a numerical value and there are some 
linguistic or binary values for some inspectional variables. For the variables related to inspection 
processes several items are integrated to produce one value representing the efficiency of related 
inspectional process. As a result, binary values are translated to numerical ones in several variables. 
Also, the same process is recurred for coating type with the purpose of translating different types of 
coatings to numbers. These variables include the inputs to the training phase of ANN. Output for each 
data point contains the monetary consequence of each failure type. For each failure type a network is 
developed in which the output for the training data contains the actual cost in the current dollars. For data 
points with a different type of failure, the consequence is changed to zero to represent ineffective failure 
type in that data point for the specific failure type. Table 1 summarizes ranges of values and categories 
attributed to each variable. “Con” is used to represent the continuous category of variables. 
 

Table 1: Ranges of values and categories of defined variables 

Variable Age Area D/Th. 
Coating  

type 
SCADA CPM CP OP SMYS 

Category Con. Label Con. Label Label Label Label Con. Con. 

Range of Value 0-112 0-3 4-122 1-6 0-3 0-4 0-4 10-2,220 52-80,000 

6 Results of Model Implementation to Case Study 

Table 2 summarizes a sample of actual values of the data embedded to the neural network to be trained. 
External normalization method is used in this paper which alters data to the range of zero to one. 
Equation 6 is used for normalisation of data, V represents values of the variable that is intended to be 
normalised and Vmin and Vmax represent minimum and maximum values of the same variable respectively. 
 

[6] Normalised value = ������
�� !����� 

 
Table 2: Sample of data entry 

Age Area D/Th. Coating type SCADA CPM CP OP SMYS 
PROP-DAMAGE 

Ex. Corrosion 

33 2 72 6 3 0 1             285        24,000  150,000 

40 1 64 2 3 0 0             275        24,000  0 

56 1 31 2 3 0 1             188        24,000  35,000 

56 3 64 1 3 0 0             275        24,000  0 
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The best performance is created by a network with two hidden layers. Table 3 presents the best MSE 
amounts for each group of subsets. Two subsets from the group of six variable networks and one from 
the group of five variable networks are selected for validation. Then the authors validate the model with 
the checking dataset comprised of 20 points of failures in the selected networks. Table 4 summarises 
selected subsets with containing variables as well as the amounts of MSE, root mean square error 
(RMSE) and correlation coefficient r for each one. 

Table 3: Minimum MSE for each group of subsets 

No of Variables Min. MSE 

5 5.62E-06 

6 4.77E-06 

7 1.25E-05 

8 1.23E-05 

9 0.000634 

 

Among the chosen subsets, the authors selected second subset including six variables, which results in a 
lower RMSE and considerably higher r value. RMSE is a measure of error of predictive models that sums 
up squares of errors of forecasts through checking dataset and is calculated from equation 3. The closer 
the amount of RMSE is to zero, the more accurate is the model and here the authors have found a lower 
value of RMSE for the second subset. Correlation coefficient r indicates the relationship between 
predicted and actual amounts, and closer values to one present more fitted models. Architecture of 
trained network for the selected subset is presented in figure 4. This network includes six neurons in the 
input layer containing age, area type, D/Th, coating type, CPM efficiency and SMYS. Two layers are 
included in the hidden layer, the first one contains seventeen and the second one includes six neurons. 
The output layer is consisted of one output layer that is direct monetary consequence of pipelines’ failures 
of external corrosion. For validation purposes the selected trained network is recalled with a code defined 
in MATLAB, then the checking dataset excluding values on selected variables is embedded into the 
trained network. The network predicts a value as the monetary consequence of each data point 
representing an actual pipeline from the database. Comparing the estimated consequences through the 
model with actual values from historical data resulted in RMSE equal to 0.001 and correlation coefficient r 
equal to 0.58 which is acceptable for this type of model.  

 

[3]  RMSE = &∑ �()*�� *+, ��-.*/ 0 ��12345  1

�   

 

Table 4: Variables, MSE, RMSE and R values of best subsets 

Subset  Variables     MSE RMSE r 

1 Area, D/Th., Coating type, CPM & SMYS  5.62E-06 0.003 0.42 

2 Age, Area, D/Th., Coating type, CPM, SMYS 6.30E-06 0.001 0.58 

3 Age, Area, Coating Type, SCADA, CPM, CP 4.77E-06 0.013 0.21 

 
 
The checking dataset is comprised of 20 data points with two failures of external corrosion. Figure 5 
compares the actual outputs from the checking dataset with the predicted values for the same data points 
after recalling the trained network. The checking dataset is embedded into the trained network and the 
predicted results are calculated. As it is evident from the graph, the model is able to forecast the pipelines 
with external corrosion failure; nevertheless, with a lower amount. Similarly, it has also recognised the 
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points with lower expectations of this failure type with a little difference. The only problem is at points 
sixteen and seventeen on which the model has forecasted a negative consequence which is not 
reasonable. In conclusion, the objective of the model to predict the points with higher effects of monetary 
consequences from this failure type has been met. However, in the future the model should be enhanced 
with more data to obtain more reliable results. 
 

 

Figure 4: Architecture of selected subset’s network 

Conclusion 
 
This research proposes an objective failure risk prediction model for oil and gas pipelines based on 
historical data on incidents of oil and gas pipelines in the USA. First, it classifies the risks in three major 
groups of physical, external, and operational. Then, it develops a methodology for a predictive model of 
risk based on a supervised artificial neural network learning machine. Finally, it presents results of the 
model for one of the risk factors which is external corrosion. The model predicts monetary consequences 
of the failure of pipelines. It applies a set of nine variables through neural network training and tests the 
network results with possible combinations of variables and changing architecture of the network and 
records values of errors for each network. Finally, the selection of best subset of variables is done based 
on a few factors: MSE, RMSE, and r values. It proves that a subset of age, area and pipeline diameter 
divided by wall thickness as well as coating type, efficiency of CPM monitoring system, and SMYS 
produces a more efficient model. Results of validation prove efficiency of the model and its accuracy. 
Moreover, the model is able to forecast the pipelines with the potential of external corrosion failure and 
recognises pipelines with an acceptable reliability which do not have the potential for this type of failure. 
Models for the other types of risk factors will be developed in the future to make a comprehensive risk 
assessment model to predict the most effective failure type on each pipeline. Also, the authors will try to 
enhance the model’s performance to predict more reliable results. 
 

 
 

Figure 5: Actual and predicted outputs of checking dataset 
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