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ABSTRACT: Pavement asset management requires the use of a large number of resources for 
evaluating pavement conditions. In spite of efforts made to optimize the decision making regarding where 
and when to maintain, repair or reconstruct a road section, there are uncertainties related to identifying an 
accurate condition of the pavement. In this regard, a more accurate estimation of pavement condition 
based on appropriate variables could aid the mitigation of risks due to improper managerial decisions and 
also the reduction of time requirements of the evaluation process. In this study, five traffic-related 
variables are considered to forecast pavement conditions. Variables are quantitative in nature. The input 
data consists of 33423 data points collected in the state of New Mexico. An ordered probit model with 
three discrete categories defining distress severity (i.e., low, medium, and high) is developed for three 
different flexible pavement distresses: raveling and weathering, edge cracks, and longitudinal cracks. 
Preliminary results show that average directional factor, combined and single commercial volume have 
the most significant effect on the pavement condition rankings. The findings of this study are perceived to 
be useful for predicting pavement condition as an input for a variety of practices in pavement 
management including investment, design, and rehabilitation policy. 

 
 
1 INTRODUCTION 
 
Different approaches have been applied to predict the pavement condition based on different variables. 
Traditional pavement condition prediction models have mostly applied regression analysis to attribute 
pavement condition to one or some of the road variables such as pavement age, traffic load or pavement 
capacity. 
 
Shahin et al (Shahin et al. 1987), Johnson and Cation (Johnson and Cation, 1992), and Lukanen and Han 
(Lukanen and Han, 1994), tried to find the relationship between pavement condition and pavement age. 
George et al. (George et al., 1989) , Saraf and Majidzadeh (Saraf and Majidzafeh, 1992)and Lee et al. 
(Lee et al., 1993) developed multivariate models to predict pavement condition. These variables include 
pavement age, traffic load, and pavement structural capacity.  
 
Regression analysis falls into two main categories: Linear and nonlinear. Among different regression 
models, the use of linear models is limited to when there is not enough data available (Hill, 1987) since 
linear models fail to satisfy most boundary conditions (Sadek et al., 1995).Compared to linear models, 
nonlinear models are more popular in the literature. Johnson and Cation (Johnson and Cation, 1992) and 
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Shahin et al (Shahin et al., 1987) used polynomial functions in their research to formulate pavement 
condition based on the distress rankings. However, Sigmoidal and Power regression models were mostly 
applied in manuals provided by different state agencies (Sigmoidal model was applied in Minnesota (Hill, 
1987), Ohio (Saraf and Majidzafeh, 1992) and San Francisco (Haas et al., 1994) whereas Power curves 
were used in Washington(Hall et al., 1994) and Illinois(Jackson et al., 1987).)  
 
In most of previous studies on this topic, the traffic load has been the primary factor considered since the 
cracks resulting from traffic load are a major design criteria for flexible pavements (Huang, 1993).Despite 
the existing forecasting models, the predicted pavement distress is different at the end of designed 
service period(Sun et al., 2003). Gibby and Kitamura (Gibby and Kitamuar, 1992) conducted a time lag 
analysis on factors affecting pavement condition in San Francisco, Fairfield, Jackson County, Puyallup, 
and Alameda County. The factors found to be significant when affecting the condition of the pavement 
are: 
 
1. Previous pavement condition, 
2. Pavement age since last major rehabilitation or reconstruction work, 
3. Soil classification, 
4. Classification of roadway drainage, 
5. Surface thickness, 
6. Functional classification  
7. Presence or absence of bus service, and 
8. Individual jurisdiction.  
 
However, their effort to use time lags analysis had the limitation of using only two time domains. In the 
absence of more time series of data it is not possible to find a serial correlation which results in an error 
when the two time domains are related and if not measured may result in inconsistencies. 
 
In 2001, Lou et al. (Lou et al., 2001) used a neural network to forecast short term crack pavement 
condition. In their model, they formulated the crack condition using time-based pavement structural 
conditions, pavement material condition and environmental conditions. In the same year, Attoh-Okine 
(Attoh-Okine, 2001) developed a “Self-Organizing Map Network” to model the pavement roughness as 
the pavement performance index according to pavement distresses as well as environmental variables.  
Although both models yield precise results, the input factors which affect the pavement condition are 
limited to one or two factors. 
 
In 2003, Sun et al.(Sun et al., 2003) applied an Empirical-Mechanistic Method based stochastic modeling 
to involve uncertainties in the number of load repetition to failure of a flexible pavement  induced by 
environment and construction-quality based conditions in addition to uncertainties from traffic 
characteristics. However, in their model, uncertainties were given a bundled credit and were not 
characterized according to the nature of each variable. 
 
Ordered probit modeling is a useful tool in order to study the effect of various parameters in transportation 
applications where ordered opinions or categorical frequency are involved (Wahsington et al., 2003). 
These models has been repeatedly used for analysis of drivers injuries (Abdel-Aty, 2003; Kockelman and 
Kweon, 2002). Shafizadeh and Mannering (Shafizadeh and F. Mannering, 2006) has successfully used 
the ordered probit model to study the effect of vehicle-specific and individual-specific factors on drivers’ 
perception of pavement roughness.  
 
In this study, pavement distress ratings are analyzed under the influence of different traffic variables. The 
variables considered here include ADT, peak hour volume, combined and single heavy traffic and 
Directional factor. An ordered probit model is estimated to manipulate available data as to find the extent 
to which the variables can affect pavement condition. 
 
 
2 DATA 
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The data used in this study comes from a pavement evaluation program sponsored by New Mexico 
Department of Transportation (NMDOT) in 2012. The evaluation of the pavement distress was done by 
Department of Civil Engineering at the University of New Mexico in 2012. The data gathering program 
included measuring and recording the severity and extent of all the pavement distresses at approximately 
5,011 sites. The evaluation sites were almost one tenth of a mile long starting at each highway milepost. 
At each collection site the contractor’s pavement inspectors visually inspected the severity and extent of 
the pavement distresses and ranked distresses from low (1) to high (3). In this study, the data used 
consists only of the evaluation for flexible pavement data. 
 
Pavement inspectors were a crew of trained student of Civil Engineering at the University of New Mexico. 
The students were trained for two weeks and were asked to fill out the pavement distress evaluation 
forms according to the criteria defined in Table 1. 
 
The traffic data used for this paper also comes from NMDOT and were updated in 2011. The traffic data 
were available for less number of routs and so controlled the amount of data input into the model. In other 
words, we only used ranking data for the routs for which the traffic data were available. Ultimately, a total 
number of 33423 observations were used to estimate the outputs for an ordered probit model. Among a 
variety of data, ADT, combined and single heavy commercial peak/Average volume, peak hour volume, 
and directional factor were used in this paper. 
 
  

Table 1: Flexible Pavement: Pavement Evaluation Reference Chart 
 

DISTRESS  
 

SEVERITY  
 

NOTES*  
 

 

Raveling & Weathering:  
The wearing away of the 
pavement surface, due 
to dislodged aggregate 
particles and loss of 
asphalt binder.  
 
 

 

(1) Low: Aggregate or binder has started 
to wear away  
(2) Medium: Aggregate or binder has 
worn away. Surface texture is rough. 
Some dislodged aggregate can be found 
on the shoulder.  
(3) High: Aggregate and/or binder have 
worn away, and surface texture is 
severely rough and pitted.  
 

 

Most prevalent  severity  

 

Edge Cracks:  
Cracks that lie within 1 
foot of the edge of the 
pavement. Does NOT 
apply in roads with curb 
and gutter installations.  

 

(1) Low: Less than ¼-inch wide. No 
spalls.  
(2) Med: Greater than ¼-inch wide. 
Some spalling may be present, but 
pavement is still intact.  
(3) High: Severely spalled. Pieces of 
pavement have broken off the edge of 
the roadway.  

 

(1) Low: 1% to 30% of test 
section.  
(2) Med: 31% to 60% of test 
section.  
(3)High: 61% of test section, 
or more.  

 

Longitudinal Cracks:  
ANY longitudinal crack 
NOT in the wheel path, 
but NOT within 1’ of the 
pavement edge.  

 

(1) Low: Unsealed, mean width of less 
than ¼-inch. OR sealed with sealant in 
good condition, any width.  
(2) Medium: Any crack with average 
width greater than ¼-inch and less than 
¾ inch. May have adjacent Low severity 
random cracks and some spalling.  
(3) High: Any crack wider than ¾ inch, 
may have adjacent moderate to high 
random cracking and spalling.  
 

 

(1) Low: 1% to 30% of 
sample section.  
(2) Medium: 31% to 60% of 
sample section.  
(3) High: 61% or more of 
sample section.  

* 10% Rule: If 10% or more of the distress shows a higher severity, use this higher severity to rate the 
distress 
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3 METHODOLOGY 
 
In this study, the relationship between the traffic variables and distress severity rankings are modeled 
using an ordered probit model. The pavement distress severity rankings are both discrete and ordered 
(from 1 to 3, one being low severity and 3 being high severity). Amemya (Amemiya, 1985) has proved 
that using an unordered model such as a multinomial logit model  for ordered data one can expect 
consistent model parameter estimates but there will be a lack of efficiency. Hence, ordered probit model 
is more suitable to address the ordered discrete data. 
 
First developed by McKelvey and Zavonia in 1975, (McKelvey and Zavoina, 1975) ordered probit models 
have been in use mostly for a variety of transportation applications. Following Washington et al. 
(Wahsington et al., 2003), in an ordered probit model an unobserved variable, z, is subjected to be 
defined in order to find the correlation between ordinal pavement severity rankings and variables that may 
affect these rankings. This unobserved variable is assumed to be a linear function of the variables which 
are perceived to be influential on the rankings (Eq. 1): 
 
 

[1]   Xz  

 
 

Where X is the vector of variables that affect the ordering of observations,  is the vector of estimable 

parameters and  is a random disturbance. Observed ordinal data, y, is then defined as in Eq. [2]: 
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Where s are referred to as thresholds and define y . The estimation problem is now one of determining 

the probability of occurrence of each of the ordered responses for the data set. The estimation problem 

then becomes one of determining the probability of i  specific ordered responses for each observation n.. 

If   is assumed to be normally distributed across observations with mean =0 and variance=1, an ordered 

probit model results with ordered selection probabilities as follows: 
 
 

[3] )()()( 1 XXiyp ii     

 
 

Where i and 1i are upper and lower thresholds for outcome i and )( is the cumulative normal 

distribution 
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If is assumed to be normally distributed across observations an ordered probit model is resulted, and if 

 is assumed to be logistically distributed the result is an ordered logit model. Ordered probit applies well 
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for such studies since it can determine unequal differences between the dependent variables’ categories. 
As an example, it does not necessarily assign same intervals’ size for low to medium severity  and 
medium to high severity.(O’Donnell and Connor, 1996) (McKelvey and Zavoina, 1975)  
 
 
4 ESTIMATION RESUTS 
 
As mentioned before, in this study, five traffic values are used to formulate pavement condition which are 
represented in Table 2. 
 

Table 2: Description of traffic variables used to model distress rankings 

Traffic Variable Definition Min, Max (Average) Values 

ADT Average Daily Traffic (ADT) 
represents the total traffic for a year 
divided by 365, or the average traffic 
volume per day 
 

0, 205059,(11915) 

Peak Hour Volume The hourly volume during the 
maximum traffic volume hour of the 
day divided by 4 times the peak 15-
minute rate of flow within that  hour 
 

0,593,(495) 

Directional Factor The proportion of traffic traveling in 
the peak direction during a selected 
hour, usually expressed as a 
percentage. 
 

0,100,(75.5) 

Single Heavy Commercial 
Average 

24-hour heavy commercial traffic 
volume (Single truck configuration) 
 

0,2,(1) 

Combined Heavy Commercial 
Average 

24-hour heavy commercial traffic 
volume (truck and trailer) 

0,4,(2) 

 
  
Three ordered probit models were estimated for the following distress severity rankings: (1) low, (2) 
Medium, and (3) high. The models parameters were estimated at a 90% confidence. The coefficient 
estimation results for the ordered probit model for the severity rankings of longitudinal cracks, is 
presented in Table 3.  
 
The information provided by the model gives an understanding on how the perceived longitudal cracks 
severity ranking are linked to traffic data such as average traffic data, combined and single heavy 
commercial peak and the peak hour volume. 
 
Among the evaluated parameters directional factor has the highest absolute coefficient with a t-statistic of 
-5.314 Combined and single heavy commercial traffic are the next most influential parameters 
respectively and ADT has the least coefficient value for this distress type. The sign of the coefficients 
obtained in the model shows how the change in the value of the parameter will affect the rankings. With a 
positive coefficient one would expect the high severity ranking while with a negative coefficient less 
severity or no severity is likely.  As shown in Table 3, ADT, combination heavy traffic, peak hour volume 
and the directional factor were found to be significant when considering distress severity for longitudal 
cracks. ADT, combined heavy commercial volume, and the directional factor made it less likely that the 
road segment was rated with a distress severity of low while the peak hour volume made it more likely 
that the distress severity was rated as high. 
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Table 3: Ordered Probit Model estimation results for longitudinal cracks 

Independent Variable Estimated Coefficient t statistic 

Traffic parameters      

Constant    0.635 19.293 

ADT -0.241D-04 -4.336 

Combined Heavy commercial volume -0.0067 -10.481 

Peak Hour Volume  0.0001 2.154 

Directional Factor -.0026 -5.314 

Model parameters     

µ1 1.267 158.39 

µ2 2.104 169.88 

Estimation characteristics 

Number of observations 33423 

Log – likelihood  -37406.32 

Restricted log-likelihood -37735.05 

 
 
For ravelling and weathering cracks, combined heavy commercial volume seems to have the biggest 
influence with relatively big coefficient and then comes directional factor. However, other variables are 
less influential as before. Among effective variables, single heavy commercial is the only variable that 
increases the probability of getting a high severity rank for ravelling/weathering cracks.  
In the case of edge cracks, the order of influential variables is different with single heavy traffic the most 
influential (with the greatest coefficient value observed so far). The value of coefficient regarding 
combined heavy traffic volume and directional factor are also noticeably high. Still, ADT has the least 
coefficient value with a low t-statistic. In this case, combined and single heavy commercial volume raise 
the likelihood of ranking the segment’s edge crack as highly severe and ADT, peak hour volume and 
directional factor make it less likely that the segment is ranked as less severe regarding edge crack. 
 
 

Table 4: Ordered Probit Model estimation results for Raveling-Weathering cracks 

Independent Variable Estimated Coefficient t statistic 

Traffic parameters      

Constant    1.692 52.050 

ADT -0.216D-04 -3.637 

combined heavy commercial volume -0.0138 -21.566 

Single heavy traffic  0.002 2.756 

Directional Factor -.00466 -9.932 

Model parameters     

µ1 1.506 181.739 

µ2 2.952 232.960 

 
 
 
 
 
 

Estimation characteristics 

Number of observations 33423 

Log – likelihood  -36097.46      

Restricted log-likelihood -37285.19 
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In addition to the aforementioned distress types the model was run for other distresses such as, bleeding, 
transverse cracks, alligator cracks, and patching which typically are of interest to state department DOT. 
However, due to the lack of data the models did not converge and hence the results are not included in 
this paper. Data for other distresses such as fatigue cracking and rutting were not available for analysis.  
 
 
 

Table 5: Ordered Probit Model estimation results for Edge cracks 

Independent Variable Estimated Coefficient t statistic 

Traffic parameters      

Constant   0.411  12.477 

ADT -0.106D-04 -1.835 

combined heavy commercial volume 0.004 6.782 

Single heavy traffic 0.084 11.337 

Peak Hour Volume -0.0001 -2.985 

Directional Factor -.003 -7.003 

Model parameters     

µ1 0.975 133.924 

µ2 1.67 157.622 

 
 
 
 
 
 
 
 
 
5 CONCLSIONS AND FUTURE WORK 
 
In this study, an ordered probit model was developed to investigate the relationships between rankings of 
severity of three different types of distresses (i.e., ravelling-weathering, longitudinal cracks and edge 
cracks) and traffic variables. The model was able to predict the threshold values for the severities of the 
three distresses. Among the traffic variables, the directional factor seems to have more influence on the 
rankings in terms of higher coefficient. On the other hand, the average daily traffic (ADT) was the least 
influential on all three distresses analyzed. However, variables considered in this study were mostly from 
available data at the time, and more variables including pavement structural variables and also 
construction variables are to be included in the future work. 
 
Future studies could build on the proposed modeling approach by including additional variables related to 
geometric, construction characteristics and maintenance schedule of the roadway segments evaluated. In 
addition, random parameters models and marginal effects could be considered as an attempt to improve 
the model estimation results. Time effect analysis could also be considered by expanding the data set 
and considering pavement deterioration throughout the years. In addition, the results of the model should 
be compared with other modeling tools such as Artificial Neural Networks to test the efficiency of the 
model. At the time, authors are working on such a comparative model. 
 
The results of this study suggest that use of an ordered probit model could have implications for asset 
management, specifically to pavement maintenance. The estimation of an ordered probit model could 
allow decision makers to forecast pavement conditions based on traffic conditions and take decisions with 
regards to maintenance, repair and rehabilitation of roadway pavement. These results could be used for 

Estimation characteristics 

Number of observations 33423 

Log – likelihood  -38185.40      

Restricted log-likelihood -39210.69      
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budget forecast, resource allocation and for establishing construction/maintenance/rehabilitation project 
lead times in pavement management systems.  
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