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Abstract: According to the Canadian Urban Transit Association (CUTA), the capital infrastructure 
needs for the period (2012-2016) are estimated at 53.5 billion CAD from which 40 Billion CAD only can be 
met by existing programs whereas a shortage of 13.5 billion CAD exists. The subway maintenance 
process is usually constrained by fund scarcity, which calls for a comprehensive prioritization method. 
The current practice adopted by most transit authorities prioritizes elements per station for rehabilitation 
based on the structural performance only while neglecting consequences of failure despite being crucial 
in ranking stations for rehabilitation. This paper presents a qualitative multi-perspective consequence of 
failure estimation model for subway metro stations. Consequences of failure are identified and assessed 
on multiple perspectives, namely; financial, operational, and social impacts of failure. The research 
revealed that the expected consequences of failure are interdependent and strongly connected; hence, 
the Fuzzy Analytic Network Process (FANP) is used with application to the Fuzzy Preference 
Programming (FPP) method. The FANP accommodates the subjectivity of human judgment as being 
expressed in natural language which entails ‘fuzziness’ in real-life problems and accounts for the 
interdependency between the selected attributes. The developed model offers a framework for clustering 
subway stations according to the expected consequences of failure severity for element level and station 
level. An illustrative example is presented to validate the model and prove its robustness. The proposed 
framework helps authorities prioritize stations and elements along stations for rehabilitation and highlights 
stations with more expected failure consequences for a more comprehensive asset analysis.  

1. Introduction 

Subway systems are essential public transit assets and one of the safest modes of transportation. They 
represent a class of safety-critical assets that should be studied in depth since their failure has 
catastrophic consequences like multiple fatalities or injuries, partial or complete loss of service, major 
traffic disruptions, and different socio-economic effects. A subway network is typically composed of 
diverse components and systems operating simultaneously to deliver the required service. This 
component diversity causes a level of complexity that complicates the process of assessing and 
maintaining the network at the desired level of service. In addition, the problem of fund scarcity faced by 
most public authorities converts it into a tough task. According to Semaan (2011), the “Société de 
Transport de Montréal' (STM) has estimated the improvement value of its network to be 493 million CAD in 
2007. Moreover, it estimated a required amount of 5.1 Billion CAD for the maintenance of the subway 
system infrastructure for the next ten years. However, STM is faced by the problem common to all public 
authorities that is lack of fund. This prevents addressing all the rehabilitation needs of the different 
systems in a timely manner. Different systems operating in a subway network are competing for 
rehabilitation priorities while having various consequences of failure (CoF) and multiple failure modes. 
This turns the prioritization process into a tough task. Elements operating in a subway network pose 
diverse rehabilitation and maintenance needs based on their role in the network hierarchy and the 
operation. Several research attempts were done to prioritize stations for rehabilitation based on condition 
assessment or deterioration models. However, these models neglected the expected consequences of 
failure whether tangible (material, labor, equipment) or intangible (loss of service, socio-economic costs).  
Such information cannot be captured by the conventional condition ratings, which is the practice adopted 
by most transit authorities. This research presents a novel methodology for the consequence of failure 
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estimation in subway networks from multiple perspectives. The research goes beyond just the monetary 
CoF to estimate subjective consequences such as operational and social effects.  

2. Background  

2.1 Consequences of Failure (CoF) 

The importance of determining the consequences of failure cannot be over emphasized; a formal review 
of such consequences diverts attention away from maintenance tasks having little or no effects and 
focuses on more-effective maintenance tasks. This ensures optimizing the maintenance spending and 
guarantees the inherent reliability of the equipment is enhanced (Gonzalez et al. 2006). Consequences of 
failure imply the various types of loss expected in case of loss of function. These losses are tangible; like 
repair cost, property damage, and, revenue loss. However, most of the expected consequences are 
mostly intangible such as service disruption, reliability loss, and, different social impacts. Researchers 
adopted diverse techniques for capturing the CoF expected for different infrastructures. The area of 
sewer and pipelines had the largest share of literature dedicated to estimating the consequences of 
failure. One of the most influential efforts for understanding and categorizing the CoF for pipelines was 
prepared by the United Kingdom’s Water Research Center (WRC 1986). The CoF were assessed by 
considering the socioeconomic impacts and the reconstruction impacts. Socioeconomic impacts 
incorporate the threat to human health and environmental quality and the costs associated with a loss of 
commerce, critical services, and sewer service. Reconstruction impacts consider the costs to the sewer 
utility to repair or replace failed sewers. Hahn el al. (2002) used two mechanisms to predict the impacts of 
failure in his knowledge-based expert system based on the (WRC 1986) paradigm of assessing the pipes. 
Kleiner et al. (2004) developed a risk model for buried pipelines. In this model, CoF were measured on a 
fuzzy qualitative nine-grade scale from extremely low to extremely severe.  

Baris (2010) developed a risk assessment model at an individual pipe level and estimated the CoF values 
by examining the geographical, physical, and functional attributes of sewer pipes in the light of expert 
opinions. Fares and Zayed (2010) followed a qualitative approach to quantify the CoF in their risk model 
for water main failure. The CoF measured the repair cost, traffic and business disruption, loss of 
production, and, type of service area. Seattle Public Utilities calculated the risk of failure in monetary 
terms through estimating the CoF as the multiplication of the base repair/replacement cost with 
modification factors based on the attributes of sewer pipes (Martin et al. 2007). Despite the numerous 
models for estimating the CoF discussed, the literature does not show much effort in the area of subway 
networks. Abu-Mallouh (1999), Farran (2009), Semaan (2009), and, Semaan (2011) did considerable 
efforts in assessing the stations condition through diagnostic models such as condition assessment and 
deterioration models. However, neither of these models studied the consequence of failure nor attempted 
to measure them. The consequence of failure estimation is characterized by a high level of uncertainty 
associated with determining the direct costs of rehabilitation or repair and even higher uncertainty and 
intangibility in determining the indirect costs such as social and operational costs. 

2.2 The Fuzzy Analytic Network Process (FANP) 

When the decision taken is one that involves uncertainty, complexity, as well as multiple and possibly 
conflicting criteria, the Multiple Criteria Decision Making (MCDM) tools are recognized as a valuable 
method to solve such problems. Saaty (2005) developed the analytic hierarchy process (AHP) as a multi-
criteria decision support methodology. The Analytic Network Process (ANP) was later developed as an 
extension to the AHP problems with criteria dependencies and feedback. The ANP derives relative 
priority scales of absolute numbers from a group of judgments that represent the relative influence of one 
of two elements over the other in a pairwise comparison with respect to an underlying control criterion. 
The AHP/ANP framework is characterized by three basic features that make them useful in multi-criteria 
decision-making problems. First, modeling the system’s complexity using a network and for more specific 
cases, a hierarchy. Second, measuring on a ration scale that ensures simplicity, and last, synthesizing to 
obtain the results. The fundamental scale for the pairwise comparison in the ANP builds upon two main 
questions; (1) which of two elements is more dominant with respect to a given control criterion, and (2) 
Which of two elements influences a third element more with respect to the control criterion. The 
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comparison is conducted to express the qualitative judgments between criteria numerically. Garuti and 
Sandoval (2005) reported that ANP provides a way to clear all the relationships among variables, and 
thus, decreasing significantly the breach between model and reality.  

Nevertheless, the ANP-based decision model is noticeably ineffective when dealing with the inherent 
fuzziness or uncertainty in judgment during the pairwise comparison process. Using a discrete scale to 
represent the verbal judgment in the pairwise comparisons has the advantage of being simple and 
straight forward, yet, it does not account for the uncertainty and imprecision associated with mapping a 
person’s judgment to a crisp number and cannot reflect the human thinking style (Kahraman et al. 2006). 
Promentilla et al. (2008) stated that in real-life decision-making situation, the decision makers could be 
uncertain about their own preference level, due to incomplete information, insufficient knowledge, lack of 
appropriate measurement scale or, uncertainty within the decision environment. In addition, decision 
makers tend to specify preferences in the form of natural language expressions that are most often vague 
and uncertain. Fuzzy logic is a natural way to incorporate the uncertainty and vagueness of the human 
judgment. When comparing two elements, the uncertain numerical ratio is expressed in a fuzzy manner 
rather than an exact one. Then, an appropriate prioritization procedure is applied to derive local priorities 
that satisfy the provided judgments.  

Mikhailov & Singh, (1999) (2003) proposed the Fuzzy Preference Programming (FPP) technique which 
derives crisp priorities from interval and fuzzy judgments. The supermatrix priority-derivation process in 
the ANP entitles complex matrix operations on real numbers; therefore, the most practical approach for 
incorporating the fuzzy concept into the ANP framework is by first deriving crisp weights/priorities from 
fuzzy comparison matrices. The FPP is applied to increase the ANP capabilities in dealing with 
inconsistent and uncertain judgments through considering crisp comparison judgments as interval 
judgments with equal lower and upper bounds. FPP provides an appropriate index to measure the 
inconsistency of human judgments especially when the decision maker’s performance is strongly 
inconsistent (Yu et al. 2007). Through adopting the concept of α–cuts to decompose fuzzy numbers into a 
number of intervals, the FPP adequately representing the initial fuzzy sets, which are further aggregated 
into crisp local and global priorities (Mikhailov 2003). The process of applying FANP using the FPP can 
be summarized in the following main steps: 

• Decompose the decision problem to construct a hierarchical or network structure including 
clusters, criteria, sub criteria, lower elements, and alternatives.  

• Highlight the dependences among all components and define the impact between each. 
• Construct pairwise comparison matrices of the components with fuzzy ratio judgments. 
• Perform FPP method on each comparison matrix individually to derive each set of local priorities. 
• Develop the unweighted supermatrix with the derived local priorities from previous step. 
• Develop the weighted supermatrix by adjusting the supermatrix to column stochastic.  
• Find the limit supermatrix with a sufficiently large power to converge into a stable supermatrix. 
• Obtain the final priorities via aggregating the weights of criteria and the scores of alternatives. 

Based upon the literature review, it is obvious the problem of estimating the failure consequences for 
subway stations have been poorly, if ever, addressed in the literature. Failure consequences are difficult 
to estimate due to their diverse and intangible nature. The literature however provided methods for CoF 
estimation for other types of infrastructure like sewers and pipelines. Other than the direct costs of failure 
and repair, the expected indirect consequences are difficult to monetize and measure (Muhlbauer 2004). 
Therefore, the methodologies adopted were mainly qualitative and incorporated expert judgment for 
constructing a base of consequences estimation. The need for a methodology that estimates the multiple 
and diverse consequences of subway failure is crucial. The fuzzy ANP is suitable for the analysis since it 
incorporates the inherent impression and subjectivity of relying on a qualitative method for the CoF 
estimation and will help provide more realistic and robust results.  

3. Research Methodology 

The problem of estimating the consequences of failure presents a challenging problem to researchers 
and industry experts due to the uncertainties associated with the different failure impacts. Direct financial 
impacts of a subway element/station failure can be estimated in monetary terms based on historical data 
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and inspection reports. The case for indirect failure impacts is different; calculating failure impacts for 
intangible factors in monetary terms is difficult and does not yield accurate results due to the high level of 
uncertainty and subjectivity associated with these factors. The indirect impacts of failure of subway station 
include, but are not limited to, service disruption, passenger delay, loss of reputation, loss of revenue in 
addition to other socio-economic impacts reflected as the extent to which the failure affects adjacent 
services and customers benefiting from the service and the ease of providing an alternative service. 
Estimating CoF for a subway network is of a highly valuable importance; it provides the public authorities 
with a framework for categorizing the network into groups of relative importance. However, in practice, 
only a fraction of the expected CoF can be monetized whereas most of the expected indirect failure costs 
are difficult to monetize and measure (Muhlbauer 2004). One way to overcome the difficulty inherent in 
these calculations is measuring the CoF using indices, which facilitates the comparison between the 
expected CoF and highlights areas of higher failure impacts. From this discussion, it is clear that the 
major purpose of identifying CoF in this research is to compare and rank station rather than estimate the 
actual cost of failure in monetary or exact terms. Thus, CoF are estimated using a relative measure of 
importance assigned to each element/station based on a set of carefully identified attributes.  

The research started by conducting an extensive study to determine the factors affecting CoF calculations 
in terms of tangible and intangible failure impacts. This revealed a wide spectrum of consequences of 
failure occurring at two different levels, element and station level. A station is composed of a number of 
elements operating simultaneously. Based on the location of the element in the station and the nature of 
task the element performs, the element failure might cause total, partial, or no station closure. This 
suggests that the CoF are element-dependent, in addition, the station location is a strong factor of the 
analysis. According to the series-parallel reliability techniques, two outlines exist for an element’s location 
in a station: in parallel or in series. A system in parallel is a redundant system where its elements work 
simultaneously, the system will fail if all elements of the system fail. On the other hand, a system in series 
requires all of its elements to operate to function effectively. A subway station is composed of elements 
operating in element, in series, or in a combination of both. For instance, the slab system is considered a 
redundant system that can operate even if one of its components fails; hence, it operates in parallel. 
Using this configuration, it can be concluded that (1) for failure in series systems, the entire floor is 
expected to fail and thus, total service disruption, and station-level closure is expected. (2) For failure in 
parallel systems, partial or no closure is expected, in case one or more element in a parallel system fails. 
In case all the elements composing a system fail, the system is not expected to operate and total system 
closure is expected. 

CoF are studied from multiple perspectives to cover the potential expected failure impacts. Figure 1 
outlines the CoF model. Based on literature and expert opinion, the CoF can be broadly grouped into 
financial impacts, social impacts, and operational impacts of failure. It is noted that some factors could fall 
under two different perspectives simultaneously. 

Financial Impacts present the direct tangible costs of material, labor, and equipment. These costs are 
measured in terms of cost of maintenance, repair or, replacement of the failed component(s). In addition, 
the expected revenue loss due to the service interruption for repair actions is counted towards financial 
impacts. The service interruption depends upon the element configuration and the interruption rate 
whether none, partial, or total and are considered in the operational impacts.  

Operational impacts are the consequences involving managerial decisions; they include time to repair 
and ease of providing alternative. The time to repair is the total time required to return the failed 
component into a functioning state. The ease of providing alternative is also a major concern since if an 
alternative is provided quickly and easily, the impact of failure can be minimized and the social costs 
incurred from this failure are kept to a minimum. 
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Figure 1: Consequences of failure model outline 

Social impacts are the direct social consequences of failure incurred by the customers. They are 
measured in terms of number of users of the station and adjacent businesses, interruption rate, and 
degree of service interruption. The magnitude of the social impacts of failure is directly proportional to the 
number of users using this station and the adjacent businesses to which this station connects. The 
number of users is a direct reflection of the station criticality with respect to size, number of lines 
connected, and, consequently, number of levels in a station. The adjacent businesses represents the 
importance of the station derived from its respective location in proximity to high residence areas, 
recreational areas, and other areas of high passenger frequency like hospitals, universities, and, schools. 
The failure in this case means direct loss to passengers and businesses depending on this station as a 
main transportation mode. The interruption rate refers to the frequency of interruptions occurring at that 
station per year and reflects the station reputation and reliability with respect to the passengers and their 
dependability on the station for their daily trips. The degree of interruption refers to whether this 
interruption will cause total station closure, partial closure, or can be repaired without station closure and 
service disruption. The station closure depends mainly upon the location of the failing component in the 
network hierarchy. Referring to the systems analysis approach; if a component operates in a series 
system, then its failure will cause closure to the station (either partial or total) based on the component 
criticality. Whereas in a parallel system, failure of a component does not require closure of the station 
since the system can still function effectively. It is stressed that in our analysis, the failure of any 
component is not considered critical enough to cause serious injury or death. In such case, the station will 
be fully closed since the human life is the most valuable and cannot be compared with any 
consequences. 

Impacts of failure show different levels of importance with respect to their share in measuring CoF. This 
requires adding a weight component to the CoF equation to account for the different weights each impact 
imposes. On the other hand, the defined impacts of failure along different categories are interdependent, 
hence, loops of cause and effect flow between them. The effect of a single impact cannot be measured 
independently without considering how other impacts affect and are affected by its occurrence. The FANP 
was therefore selected to obtain the relative weights of these factors. The FANP addresses the 
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interdependency inherent in the relation between these factors and accounts for the uncertainty caused 
by the use of expert opinions due to the topic subjectivity. In order to estimate the overall consequence of 
failure for each station the following steps are adopted:  
• Identify CoF attributes of different elements using literature review and expert opinion, 
• Categorize CoF according to their social, operational, and financial Impacts, 
• Estimate the consequences of failure weightsሺܥ ௜ܹሻ, using expert opinion and FANP, 
• Compute the severity scores (ܵݏ௜) using expert opinion, station configuration and historical data,  
• Compute each element consequence of failure index (ܨܥ௜ሻ using equation 1, 
௜ܨܥ  [1] ൌ ܥ ௜ܹ כ  ௜ݏܵ 
• Aggregate the CoF indices for different elements per station using equation 2 and what-if scenarios, 
∑ = ݊݋݅ݐܽݐݏ|ܨܥ  [2] ௜ܨܥ

௡
௜ୀଵ   

Where: i= elements operating per station 
• Use the (݊݋݅ݐܽݐݏ|ܨܥሻ to prioritize subway stations for rehabilitation according to the CoF index.  

4. Illustrative Example 

An illustrative example is presented to demonstrate the potential benefits of the above-mentioned 
methodology. In this example, CoF are compared across three stations for a typical station system slab. 
The slab is located in the first floor of the station. Three arbitrary stations are selected for comparison and 
given the notations A, B, and, C respectively. Hypothetical attributes weights and scores are assumed for 
comparison purposes.  

4.1 Criteria and Sub-criteria Weight (۱ܑ܅) Determination  

i. Construct the model as a network of clusters and nodes, with the clusters acting as the main 
criteria and the nodes as the sub criteria. Our case is formulated as a network with single control 
criteria that is the consequences of failure. The objective is to determine the relative weight for 
the different impacts of failure through considering the relations between main criteria and sub 
criteria and introduce them as clusters, nodes, and influence links in the network created using 
the Super Decisions® Software developed by Saaty (2012) shown in Figure 2.  

 

Figure 2: Consequence of Failure ANP Network 
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ii. Conduct Pair wise Comparisons using a fuzzy extension of the 9-point fundamental scale 
proposed by Saaty (2001) and shown in Table 1. Triangular fuzzy numbers are selected for their 
wide applicability and ease of comprehend by decision makers. The fuzzy scale is used to 
represent subjective pairwise comparison of the defined nods and clusters to capture the 
vagueness of the comparison. The pairwise comparison is conducted on three levels;  
• Between main criteria (social, financial, and operational impacts) regarding goal (CoF), 
• Between main-criteria with respect to each other (outer independence), and,  
• Between sub-criteria with respect to main-criteria (inner independence) 

Table 1: Saaty Linguistic scale of relative importance 
Linguistic Scale used Triangular fuzzy scale 

Equal Importance (1,1,1) 
Moderate (2,3,4) 

Strong (4,5,6) 
Very strong (6,7,8) 

Absolute (9,9,9) 

iii. Perform FPP method on each comparison matrix individually to derive sets of local priorities. 
Calculate the weights using the FPP method according to equation 3. It is required to derive crisp 
priority vector w= (w1, w2… wn)T, such that the priority ratios wi/wj  are approximately within the 
scopes of the initial fuzzy linguistic judgments provided, 

 [3]  Max λ            
Subject to  ሺ݉௜௝ െ - ௜௝ሻ λwjܮ ௜ܹ ൅ ௜௝ܮ  ௝ܹ ൑ 0              

   ሺݑ௜௝ െ ݉௜௝ሻ λwj + ௜ܹ െ ௜௝ݑ  ௝ܹ ൑ 0              
         i= 1, 2, 3, … , n-1,   j= 2, 3, … , n,   j>i 

Where; ܮ௜௝, ݉௜௝,  ௜௝ are the lower, medium, and, upper bounds of the triangular judgmentsݑ
respectively. 
MATLAB® is used at this stage of the analysis due to its known capabilities for solving non-linear 
equations. The output of this step is crisp weights derived from fuzzy judgments. 

iv. Develop the unweighted super matrix based on the interdependencies defined and the crisp 
weights obtained from step (iii).The nodes, grouped by the clusters they belong to, are the labels 
of rows and columns of the supermatrix.  

v. Develop the weighted super matrix from the unweighted supermatrix. The weighted supermatrix 
is obtained by dividing each entry in each row in the unweighted supermatrix by the total 
summation of its relative intersecting column.  

vi. Develop the limit supermatrix by raising the weighted supermatrix to sufficient large powers until 
convergence occurs. 

Steps (iv) to (vi) are done using the Super Decisions® Software developed by Saaty (2012).  
vii. Calculate Global weights from the limit supermatrix by proportioning elements of each cluster to 

themselves.  
 
The expected outputs from the previous steps are local and global weights of criteria and sub criteria as 
shown in Table 2.  

4.2 Severity Score (ܑܛ܁) Calculations 

The attributes considered are diverse and have different performance scales. Therefore, the maximum 
and minimum values for the scales are identified to allow the score normalization. The attributes and their 
upper and lower limits are defined in Table 3. The station score is obtained for the three stations under 
comparison with respect to the failed slab. Based upon the element and the repair methodology, if the 
element is in a series system, then its failure will imply the total closure of the station for repair purposes, 
that means full service interruption for this line of the station and consequently full loss of revenue 
(100%). In case of an element in parallel, the expert is asked to provide a percentage for the expected 
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service interruption due to the repair/replacement activities. This percentage is expected to be the same 
for the loss of revenue; hence, even if only partial service interruption is expected, a loss of revenue can 
still be expected due to station congestion, service delay due to repair/replacement activities, customers 
shifting of transportation mode due to the delay, etc. The same percentage also applies for the number of 
users and adjacent businesses affected by the service interruption/loss.  

Table 2: Example of local and global criteria obtained using ANP calculations 
Main Criteria Global weight Sub Criteria Local Weight Global weight 

Financial 
Impacts 35.6% Loss of Revenue 24.7% 8.79% 

Repair/replacement cost 75.3% 26.81% 

Social Impacts 38.2% 
Degree of service interruption  15.5% 5.92% 

Interruption rate 20.6% 7.87% 
No. of users and businesses 63.9% 24.41% 

Operational 
Impacts 26.2% Time to repair 73.7% 19.31% 

Ease of Providing Alt. 26.3% 6.89% 
 

Table 3: Consequence of failure definition and scales  
Impact of 

failure Attribute Definition Score 
Maximum Minimum 

Financial 

Repair and 
replacement cost 

Direct cost for replacement/repair of 
the failed component 

Replacement 
cost/element  

Repair  
cost/element  

Loss of revenue 

Profit loss due to service interruption, 
stoppage, reputation loss, etc. 

provided by the decision maker as the 
expected % of service interruption 

100% 0% 

Operational 

Ease of providing 
alternative 

Measured by the decision maker on 
a 1-10 scale as the ease and speed 

of providing an alternative   

Difficult and 
timely to 

provide = 10 

Easy, fast and 
efficient =1 

Time to repair Required time to return the failed 
component to a full functioning state 365 days 0 days 

Social 

No. of users and 
adjacent 

businesses 

The number of users and 
businesses as a percentage 

affected by the service interruption 
100% 0% 

Interruption Rate 
Defined by the decision maker as 
the maximum allowable number of 

interruptions per year 
6 0 

Degree of service 
interruption 

Estimated as a % based on element 
configuration and decision maker 

Full interruption 
= 100% 

No interruption 
= 0% 

Station B is assumed as an interconnecting station located in a vital location in proximity to critical 
businesses. Because of its importance, it is regularly maintained and several bus lines pass by the 
station. Therefore, sub criteria O1 is given a low score since a network of buses already exists and S2 
has a low value. On the contrary, stations A and C are single line stations and the bus lines passing by 
them are limited, thus, more time, and resources are required to provide an alternative service. The failure 
in station A is severe and slab replacement is required, which implies a higher degree of time to repair 
(O2), service interruption (S1) and, consequently revenue loss (F1). Besides, the repair cost (F2) is the 
maximum expected. The deterioration in stations B and C is less, therefore only partial repair is required, 
and consequently less scores for attributes F1, F2, S1, and, O2. Based on the previous description, the 
scores for the different attributes are assumed as shown in Table 4. 
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Table 4: Stations Scores for failure attributes 

Main Criteria Sub Criteria Stations Normalized score 
Station A Station B Station C 

Financial Impacts F1: Loss of Revenue 5 3 2 
F2: Repair/replacement cost 10 5 3 

Social Impacts 
S1: Degree of service interruption 5 3 2 

S2: Interruption rate 3 1 3 
S3: No. of users and businesses 6 8.5 4 

Operational Impacts O1: Ease of Providing Alt. 6 1 5 
O2: Time to repair 5 2 1 

4.3 Consequence of failure index (CF) calculations 

Using criteria weights and severity scores shown in Table 2 and Table 4 respectively, the consequence of 
failure index is calculated for the slab along the three stations and presented in Table 5. 

Table 5: Final Consequence of Failure indices 

Sub Criteria Global weight Stations Consequence of failure index 
Station A Station B Station C 

Loss of Revenue 8.79% 0.4395 0.2637 0.1758 
Repair/replacement cost 26.81% 2.681 1.3405 0.8043 

Degree of service interruption 5.92% 0.296 0.1776 0.1184 
Interruption rate 7.87% 0.2361 0.0787 0.2361 

No. of users and businesses 24.41% 1.4646 2.07485 0.9764 
Ease of Providing Alt. 6.89% 0.4134 0.0689 0.3445 

Time to repair 19.31% 0.9655 0.3862 0.1931 
Compiled scores  100% 6.4961 4.39045 2.8486 

From the previous results, station A was found to have the highest compiled CoF index and thus, the 
highest repair priority with respect to stations B and C in case of station system slab failure. This example 
proves the proposed technique’s capability to rank repair priorities, when comparing between three 
stations in term of a single failed element while considering multi-perspective failure consequences. A 
wider level analysis involves comparison between stations in terms of all existent elements and using 
what-if scenarios, different cases of elements failure can be studied. In terms of CoF estimation, this 
research is pioneer in covering the topic through identifying tangible and intangible expected CoF and 
measuring their respective weights and scores. The analysis methodology demonstrates using FANP with 
application of the FPP method that adds a level of criteria interdependence to the analysis and ensures a 
comprehensive analysis despite the high topic subjectivity. 

5. Conclusion 

The current paper presents multi-perspective consequences of failure estimation model for subway metro 
stations. The presented model adopts a qualitative approach for impacts of failure estimation with the 
help of expert opinion and available historical data. This permits measuring diverse and intangible CoF 
that are usually difficult to estimate and capture. The research revealed clusters of CoF that are 
interdependent and strongly connected, hence, the FANP is used as the main analysis methodology to 
account for the cause and effects loops flowing in between consequences of failure. The FANP combines 
the advantages of the ANP of modeling the system’s complexity and goes beyond that to account for the 
imprecision and uncertainty associated with mapping of an expert’s judgment to a crisp number through 
integrating the fuzzy concept into the analysis process. The developed model offers a framework for 
clustering subway station according to the CoF severity on element and station level. An illustrative 
example is presented to validate the model and illustrate how repair priorities are identified when 
comparing an element failure across a number of stations. The methodology is believed to help decision 
makers prioritize rehabilitation needs across different stations in a network based upon the multi-
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perspective failure impacts measured. For future research, the proposed methodology will be applied in 
real case studies for reliability and validation matters.  
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