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Abstract: It is a widely held assumption in the construction industry that activities, especially those that 
involve labor crews, should be scheduled to perform continuously until they are completed. However, in 
certain scenarios, depending on the production rates of their adjacent activities, a strategic intentional 
interruption of activities can create opportunities to improve the schedule by reducing the total duration of 
the project. This paper analyzes the possibility of interrupting activities with either constant or variable 
production rates toward the objective of minimizing the total project duration. For activities that exhibit a 
constant production rate, a heuristic approach determines the feasibility of interrupting activities based on 
scenario analysis and application of geometry to attain the objective. For activities that exhibit a variable 
production rate, a mathematical model is developed, extending the geometric approach with singularity 
functions. A genetic algorithm (GA) is applied in the computer implementation to achieve the objective. 
Using singularity functions allows modeling complex activities, including all changes in production rates 
and work breaks, with a single functional expression, greatly reducing the number of constraints that must 
be implemented for optimization. A complex schedule example is presented to illustrate how the new 
model can be applied to intentionally interrupt activities to gain a large reduction in total project duration. 

1 Introduction 

The Linear Scheduling Method (LSM) is a two-dimensional and visually-based method to analyze project 
schedules, wherein one dimension represents work units and the other represents time. LSM provides a 
convenient tool to express project progress, analyze resource utility, and perform optimization. Much 
research examined various aspects (Srisuwanrat and Ioannou 2007, Harris and Ioannou 1998, Russell 
and Caselton 1988). Most studies made the assumption of continuous activities that do not suffer from 
interruptions and/or that resources are utilized continuously. However, scheduling processes continuously 
does not guarantee an optimal solution for a repetitive construction project. Moreover, resource continuity 
cannot be guaranteed due to several factors: (1) Production rates of activities are not always identical, (2) 
location sequencing may vary among activities, (3) some activities are not performed in certain locations, 
and (4) logic constraints between activities can vary at different locations (Russell and Caselton 1988). 
Hegazy and Kamarah (2008) illustrated the principle of how interruptability can reduce the total project 
duration. Of course, not all activities can or should be interrupted. Long and Ohsato (2009) categorized 
activities into two types, interruptible and non-interruptible by using several criteria. Additionally, Long and 
Ohsato (2009) proposed a method to minimize the project duration. Assuming that a range existed for 
each activity duration and all activities were interruptible, a GA was used to minimize the project duration 
under the constraints of precedence relationships. The proposed methodology also could be applied to 
minimize only cost or a combination of cost and duration. Ipsilandis (2007) took into account project 
duration, resource idle time, unit completion time, and float in proposing a multi-objective linear program 
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model. The uniform model could be customized to handle different objectives, including project duration, 
work-break duration, unit completion time, total cost of work-break, project delay cost and work-break cost 
tradeoff. Note that most of the current research had been limited to only deterministic linear scheduling. 

After considering variability in production rates of activities, Srisuwanrat and Ioannou (2007, p. 2153) 
addressed the “tradeoff between maintaining and relaxing resource continuity constraints … to maximize 
expected project profit.” Their methodology was based on integrating probabilistic simulation with 
optimization, for which a completed unit algorithm and a GA were implemented. González et al. (2009) 
addressed the buffer utilization to overcome the production variability, and proposed a multi-objective 
analytic model that employed simulation toward Pareto optimality. By controlling the buffer between 
adjacent activities, project objectives of time, cost, and productivity were optimized. Srisuwanrat (2009) 
systematically examined linear scheduling by applying probabilities. Using probabilistic simulation, a 
sequence step algorithm was implemented to minimize the total project duration while maintaining a 
continuous resource utilization. Crew arrival time and crew idle time were scheduled using user-specified 
confidence levels. The probabilistic approach also allowed the tradeoff between relaxing the resource 
continuity constraint, project duration, and cost to be analyzed. Srisuwanrat (2009) also discussed the 
concept of work breaks, deliberate interruptions within a schedule that differ from unintentional idle time. 
Lucko (2008) introduced a novel way of applying singularity function to linear scheduling, the productivity 
scheduling method (PSM). Singularity functions originated from structural engineering and are applied in 
this article. The PSM provides a powerful mathematical model to flexibly model construction activities. 

2 Research Objectives and Methodology 

This paper analyses the interruptability of activities with constant and variable production rates (activities 
with linear progress or exhibiting a ‘zigzag’ shape) in the context of linear scheduling to minimize the total 
project duration and the number of interruptions and their sum. The following objectives will be delivered: 
(1) Classifying activities into interruptible and non-interruptible by addressing external factors and impacts 
on project duration for linear scheduling; (2) Generating rules for how and where interruptions should 
occur based on scenarios analysis; (3) Proposing solution methods for different scenarios and developing 
their corresponding algorithm; and (4) Applying singularity functions in order to model activity interruptions 
and to allow efficient optimization computations. Figure 1 represents the methodology of this research. 

2.1 Interruptability of Activities 

The classification criteria proposed by Long (2009, p. 502) are adopted here: “If an activity is outsourced, 
or relied on external resources,” or “is performed by a big crew,” or incurs a high idle cost, then such 
activity should be considered as being non-interruptible; else it can be generally considered interruptible. 

2.2 Interruptability Analysis of Activities with Constant Production Rates 

If an activity has a constant production rate, the activity is linear within the graphical LSM. There are two 
distinct concepts in LSM, the controlling sequence and the critical path. Both concepts have different 
meanings for repetitive projects. The controlling sequence (Harris and Ioannou 1998) is a continuous path 
from project start time to finish time, and is determined based on resource continuity. Delaying activities 
that are part of the controlling sequence will break the resource continuity, but may not delay the project. 
The critical path however, determines the project duration, and any delay of critical activities on it will 
delay the project. There may not exist a continuous critical path for a repetitive project that encompasses 
full activities. The four types of activities are defined per Table 1 and illustrated in the following figures. 

Table 1: Activity Type Matrix 

Sequence Critical activity Non-critical activity 

Controlling Blue Yellow 
Non-controlling Red Green 
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Figure 1: Methodology 

For linear activities a geometric approach to determine interruptability is applied. To measure the impact 
of interruption on project duration and generate a rule that allows for optimization, different scenarios are 
analyzed, each of which generate a ‘hinge’ configuration so that B should indeed be interrupted. Scenario 
1 occurs if the slope (inverse of the production rate for vertical time axis) of activity A is equal to the slope 
of C, and both are greater than the slope of B, as Figure 2 shows. Its heuristic optimization process 
follows the following steps, where segment numbers indicate intervals on the horizontal work axis and 
buffers of one work unit are dashed lines: (1) Break B into segments and move the critical B1 down to 
when A1 finishes, then move B2 to B4 respectively; (2) move C to the finish of the segments of B. In this 
scenario, all activities and their segments become critical and the optimal number of interruptions is equal 
to the number of work units minus one. Scenario 2 occurs when the slope of A is greater than that of C, 
which is greater than that of B, as Figure 3 shows. Its heuristic has these steps: (1) Break B into 
segments and move them down to when the segments of A finish; (2) schedule C according to the last 
unit of B, which determines the minimum project duration; (3) minimize interruptions in B by checking 
segments n – 1 to 1. If it can be moved back up to join with its successor without violating the buffer, then 
move it to eliminate one interruption; otherwise keep it at the current position and examine the next one. 

The aforementioned controlling sequence is related to resource continuity. For example, in Scenario 1 the 
controlling sequence – specifically allowing for interruptability – consists of segments A1 to A5, B4 to B2 (in 
inverse order due to the ‘hinge’ that forms between the three activities with a finish-to-finish relationship 
from A to B and a start-to-start relationship from B to C) and C1 to C5. If they are not delayed, resources, 
e.g. labor crews, of each activity can proceed continuously. Yet from the view of the total project duration, 
B2 to B4 (yellow) can be delayed without impacting the project duration. Criticality, on the other hand, is 
related to project duration. If B1 (red) is delayed, the start of C will be delayed, which will result in a delay 
to the entire project. B1 is non-controlling in Scenario 1, same as B5 (green), but the latter is non-critical. 
The last activity, here C (blue), is always both critical and controlling and under the assumptions of this 
optimization will never be interrupted. While the controlling sequence is continuous throughout the linear 
schedule before the optimization process is applied, ultimately such a continuous controlling sequence in 
its traditional definition will not exist within the linear schedule once all interruptions have been inserted. 
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2a: Before Interruption 2b: After Interruption 

Figure 2: Scenario 1: Slope B < Slope A = Slope C 

  

3a: Before Interruption 3b: After Interruption 

Figure 3: Scenario 2: Slope B < Slope C < Slope A 

Scenario 3 occurs when the slope of C is greater that of A, which is greater than that of B, as Figure 4 
shows. Scenario 3 thus represents the inverse case of Scenario 2 during the optimization. Of course, the 
optimization toward the minimum number of interruptions will depend on the specifics of each scenario. 
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4a: Before Interruption 4b: After Interruption 

Figure 4: Scenario 3: Slope B < Slope A < Slope C 

For this scenario, the optimization process has the following steps: (1) Break B into segments and move 
them down to when the segments of A finish; (2) schedule activity C according to the first unit of B, which 
determines the project duration; (3) minimize interruptions in B by checking segments n to 2. If it can be 
moved back up to join with its successor without violating the buffer, then move it to eliminate one 
interruption; otherwise keep it at the current position within the schedule and examine the next segment. 

2.3 Interruptability Rule for Activities with Constant Production Rates 

Based on the scenario analysis, the interruption rule for the activities with constant production rates can 
be formulated as follows: (1) The interruptability of activities can be optimized toward the minimum project 
duration and minimum number and duration of interruptions by analyzing triplets (predecessor, activity, 
and predecessor); (2) an activity should be interrupted if and only if its slope is smaller than that of both 
its predecessor and successor, i.e. its production rate is higher than its neighbours in the LSM diagram. 

2.4 Heuristic Algorithm for Activities with Constant Production Rates 

Using the aforementioned approach, a heuristic algorithm is created to perform the desired minimization 
of the project duration as follows: (1) Based on the initial linear schedule, check which activities could be 
interrupted per the rule above; (2) break interruptible activity into segments; (3) schedule its successor 
activity as early as possible; (4) optimize the interruptible activity by checking each segment. If it can be 
move back up to join with its successor, then move it; otherwise do nothing; (5) repeat for all interruptible 
activities sequentially in the schedule. The complete algorithm is presented as a flowchart in Figure 5. 

2.5 Interruptability Analysis of Activities with Variable Production Rates 

For activities with a variable production rate, the situation is more complex. The first rule for interrupting 
activities with varying production rates is that the activity is a candidate for interruption if and only if: (1) 
The start of an activity segment is after the finish of its predecessor segment – the possibility condition; 
(2) segments per (1) occur earlier (to the left) of the final critical point that is restricted by its predecessor 
– the necessity condition; and (3) the first and the last activities are not considered interruptible in terms 
of minimizing the project duration. Since the production rates are variable within activities themselves, the 
logic constraints should be examined not just at the activity level, but among adjacent individual segments 
during an optimization. Equation 1 provides the maximum number of constraints for adjacent segments. 
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Figure 5: Flowchart of Heuristic Algorithm 
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Where Nc is the number of constraints, Na is the number of activities, and Ns is their number of segments. 
For example, for Scenario 1 with Na = 3 activities with Ns = 5 segments each exist up to Nc = 2 · (3 – 2) · 
(5 – 1) + (3 – 2) + 5 = 2 · 1 · 4 + 1 + 5 = 14 links exist, i.e. constraints within the system to be optimized. 
The first eight links consist of four links within B1 to B5 plus four links between intermediate segments of A 
and B, the next one is to the start of B, and the last five are to and within the non-interruptible last activity. 

2.6 Modeling Utilizing Singularity Functions for Activities with Variable Production Rates 

Modeling using singularity functions provides a uniform and flexible mathematical model to incorporate 
the interruptions directly into LSM and allows easy computer implementation. The basic form of singularity 
functions is provided by Equation 2, which contains the activation cutoff a and the behaviour exponent n. 
This basic form allows customization to express a multiplicity of behaviours. Using singularity function to 
express activities with breaks within a linear schedule is demonstrated in the following schedule example. 
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2.7 Genetic Algorithm 

GA is a feasible method to this problem, which is performed with a population of 50, 25 generations, a 
stochastic uniform selection, crossover rate of 0.6, and mutation rate of 0.05 per the flowchart of Figure 6. 

 

Figure 6: Flowchart of Genetic Algorithm 

3 Schedule Example 

A larger scheduling example than the previously described scenarios was designed with six activities with 
varying production rates and ten segments to demonstrate the methodology and test its functioning. The 
initial schedule is provided in Table 2 and Figure 7. How activities can be modeled for all possible breaks 
is shown by the singularity functions of Equations 3 through 9. The initial project duration is 52 weeks. 

Table 2: Activity Information 

Time Distance at Each Segment (Weeks) 
Activity Successor 

1 2 3 4 5 6 7 8 9 10 

A B 2.0 2.0 2.0 3.0 3.0 3.0 3.0 1.0 1.5 1.5 
B C 0.5 0.5 0.5 0.5 2.5 2.5 2.5 1.5 1.5 1.5 
C D 2.5 2.5 2.5 2.5 2.5 2.5 1.0 1.0 1.0 2.0 
D E 1.0 1.0 1.5 1.5 1.5 0.5 0.5 1.0 1.0 1.0 
E F 3.0 3.0 3.0 3.0 1.5 1.5 1.5 1.5 1.5 1.5 
F - 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 
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7a: Before Interruption 7b: After Interruption 

Figure 7: Activities with Variable Production Rates Example 
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Where x is the work unit, y(x) is a singularity function that calculates values on the curves in Figure 7, 
y(0)B to y(0)F are the starts of activities B, C, D, E, and F, respectively, that are varied during optimization, 
and bi, ci, di, and ei are the respective breaks at segment i of activity B, C, D, and E that are also varied. 
Sums in Equations 5 through 8 allow that all possible interruptability scenarios can be expressed with 
breaks at their respective integer work units. In general, values of these five starts and 4 · 9 = 36 breaks 
could take on any positive or even negative real number, but for practical purposes it is useful to restrict 
them to multiples of the time unit for y(x), even though this might limit the search for minima somewhat. 
Per Equation 10, for a buffer of one work unit, a start of a successor segment j must be larger than or 
equal to a finish of its predecessor segment i on the time axis. Singularity functions enable automatically 
building numerous constraints into the mathematical model, which reduces the effort to code them to well 
under half (47.7%), as Equation 1 would else yield 86 constraints. This schedule example is optimized 
with a GA, whose corresponding performance and results are depicted in Figures 7 and 8, and numerical 
values are listed in Tables 3 and 4. Its minimized total project duration becomes 35 weeks with 28 breaks. 

 

Figure 8: Optimization Process 

Table 3: Optimization Result 1 

Activity B C D E F 

Start [Weeks] 2.0 2.5 5.0 6.0 12.0 

Table 4: Optimization Result 2 

Break Between Adjacent Segments [Weeks] 
Activity 

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

B 1.55 2.79 1.54 2.11 0.50 0.50 0.00 0.16 0.00 
C 0.00 0.50 0.49 1.01 0.00 0.80 0.70 1.16 0.00 
D 1.50 2.00 1.49 2.00 1.00 1.63 1.25 0.89 0.89 
E 0.00 0.00 0.00 0.50 0.49 0.14 0.87 0.40 0.26 
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4 Conclusion and Future Research 

Within the context of minimizing the total project duration and the number of breaks and their sum, the 
interruptability of activities with constant and varying production rates has been analysed. For activities 
with a constant production rate, a rule has been proposed to determine the interruptability of activities 
based on scenario analysis, and a heuristic algorithm has been designed to perform this multi-objective 
optimization based on a geometrical approach. For activities with varying production rates an integrated 
model using singularity functions has been proposed, and a GA has been implemented. The contribution 
to the body of knowledge is that the new approach has demonstrated that the interruptability of complex 
linear schedules that contain activities with variable production rates can be uniformly and dynamically 
modeled with singularity functions, which reduces the number of constraints within the linear schedule 
significantly and benefits an intelligent optimization. Since interruptions can have many side effects on 
projects besides enabling a minimized total project duration for certain scenarios, such as the interruption 
cost and loss of a learning effect, such detriments should be taken into account under future research. 
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